Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 13(1): 6279, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270992

RESUMO

Diabetic wound is one of the most intractable chronic wounds that is prone to bacterial infection. Hypoxia is an important feature in its microenvironment. However, it is challenging for antimicrobial therapy to directly apply the existing hypoxia-responsive drug delivery systems due to the active targeting deficiency and the biofilm obstacle. Herein, we customizes a hypoxia-responsive carrier, lactose-modified azocalix[4]arene (LacAC4A) with the ability to actively target and inhibit biofilm. By loading ciprofloxacin (Cip), the resultant supramolecular nanoformulation Cip@LacAC4A demonstrates enhanced antibacterial efficacy resulting from both the increased drug accumulation and the controlled release at the site of infection. When applied on diabetic wounds together with multidrug-resistant Pseudomonas aeruginosa infection in vivo, Cip@LacAC4A induces definitely less inflammatory infiltration than free Cip, which translates into high wound healing performance. Importantly, such design principle provides a direction for developing antimicrobial drug delivery systems.


Assuntos
Anti-Infecciosos , Diabetes Mellitus , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Lactose , Testes de Sensibilidade Microbiana , Preparações de Ação Retardada , Úlcera/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos , Hipóxia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Diabetes Mellitus/tratamento farmacológico
2.
Environ Pollut ; 313: 120059, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049576

RESUMO

The process improvement, a pilot remediation test and the decontamination mechanism of microwave-induced steam distillation (MISD) for petroleum hydrocarbons (PHs) removal were conducted. Processes of multistage steam distillation and carbon reinforcement were compared to determine the best remediation process. Pilot project was then carried out to explore the applicability of MISD in site-scale remediation. The remediation efficiency, procedures and influencing factors of site-scale MISD project were studied by monitoring variations of soil moisture, temperature and PHs concentrations. Furthermore, the decontamination mechanisms of PHs were clarified based on kinetic analysis. The results showed that the multistage steam distillation could improve 10%∼15% remediation efficiency, and the carbon reinforcement could shorten remediation duration of each steam distillation stage by 50%. Pilot MISD project adopted multistage steam distillation process and went through four (initial, rapid heating-up, gentle heating-up and quasi-equilibrium) remediation stages (overall temperature ≤100 °C). The final PHs removal rate was about 60%, which would get better with greater proportion of low boiling points components and stronger vapor extraction. Kinetic studies showed that PHs was removed by steam stripping and limited by intraparticle diffusion in the "steam distillation zone", while local high temperature (>100 °C) greatly improved PHs volatilization and provided activation energy for PHs desorbed and degraded in the "selective heating zone".


Assuntos
Petróleo , Poluentes do Solo , Carbono , Destilação , Hidrocarbonetos , Cinética , Micro-Ondas , Petróleo/análise , Projetos Piloto , Solo , Poluentes do Solo/análise , Vapor/análise
3.
Biomarkers ; 27(8): 784-794, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36083032

RESUMO

INTRODUCTION: Adipose tissue fibrosis is a typical feature of adipose tissue dysfunction in obese individuals, which is closely related to metabolic diseases. OBJECTIVE: To explore the effect and mechanism of Saponins from Panax japonicus (SPJ) on adipose tissue fibrosis in obese mice induced by high fat diet (HFD). MATERIALS AND METHODS: We established a HFD induced obese mice model. Then the obese mice were treated with 90 mg/kg SPJ by oral gavage for 10 weeks. The levels of adipose tissue fibrosis and molecules related to signalling pathways were measured. Then the effects of SPJ on TGFß1-induced fibrosis in 3T3-L1 differentiated adipocytes were evaluated. RESULTS: SPJ reduced body weight, fat accumulation, and improved glucose and lipid metabolism in obese mice. SPJ decreased collagen deposition and expressions of fibrotic genes in epididymal white adipose tissue (eWAT) of obese mice. SPJ decreased the levels of TGFß1 protein and pSmad2, and increased the expression of PPARγ and PGC1α, thus alleviating oxidative stress in eWAT. Consistently, SPJ inhibited TGFß1-induced fibrosis in 3T3-L1 differentiated adipocytes. CONCLUSIONS: SPJ may alleviate adipose tissue fibrosis and improve obesity by inhibiting TGFß1/Smad2 and activating PPARγ/PGC1α pathway. SPJ is expected to become an efficient medicine for treatment of obesity.


Assuntos
Panax , Saponinas , Animais , Camundongos , Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Fibrose , Camundongos Obesos , Obesidade , Panax/química , Panax/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , PPAR gama/metabolismo , PPAR gama/farmacologia , Saponinas/farmacologia , Saponinas/metabolismo
4.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843526

RESUMO

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Assuntos
Bacillus amyloliquefaciens , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carboidratos , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/prevenção & controle , Inflamação/veterinária , Fígado/metabolismo
5.
Phytomedicine ; 105: 154262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35896045

RESUMO

BACKGROUND: Oxidative stress is a crucial factor leading to subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). Isoliquiritigenin has been verified as a powerful anti-oxidant in a variety of diseases models and can activate sirtuin 1 and nuclear factor-erythroid 2-related factor 2 (Nrf2) pathways. However, the effects of isoliquiritigenin against EBI after SAH and the underlying mechanisms remain elusive. PURPOSE: The primary goal of this study is to verify the therapeutic effects of isoliquiritigenin on EBI after SAH and the possible molecular mechanisms. STUDY DESIGN: A prechiasmatic cistern SAH model in rats and a hemoglobin incubation SAH model in primary neurons were established. Isoliquiritigenin was administered after SAH induction. EX527 was employed to inhibit sirtuin 1 activation and ML385 was used to suppress Nrf2 signaling. METHODS: In our study, neurological scores, brain edema, biochemical estimation, western blotting, and histopathological study were performed to explore the therapeutic action of isoliquiritigenin against SAH. RESULTS: Our data revealed that isoliquiritigenin significantly mitigated oxidative damage after SAH as evidenced by decreased reactive oxygen species overproduction and enhanced intrinsic anti-oxidative system. Concomitant with the reduced oxidative insults, isoliquiritigenin improved neurological function and reduced neuronal death in the early period after SAH. Additionally, isoliquiritigenin administration significantly enhanced Nrf2 and sirtuin 1 expressions. Inhibition of Nrf2 by ML385 reversed the anti-oxidative and neuroprotective effects of isoliquiritigenin against SAH. Moreover, inhibiting sirtuin 1 by EX527 pretreatment suppressed isoliquiritigenin-induced Nrf2-dependent pathway and abated the cerebroprotective effects of isoliquiritigenin. In primary cortical neurons, isoliquiritigenin treatment also ameliorated oxidative insults and repressed neuronal degeneration. The beneficial aspects of isoliquiritigenin were attributed to the promotion of sirtuin 1 and Nrf2 signaling pathways and were counteracted by EX527. CONCLUSION: Our findings suggest that isoliquiritigenin exerts cerebroprotective effects against SAH-induced oxidative insults by modulating the Nrf2-mediated anti-oxidant signaling in part through sirtuin 1 activation. Isoliquiritigenin might be a new potential drug candidate for SAH.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Animais , Ratos , Antioxidantes , Apoptose , Chalconas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1
6.
Chem Commun (Camb) ; 57(94): 12627-12630, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761762

RESUMO

Calixarenes are reportedly excellent activators that can remarkably improve the transport efficiencies of cell penetrating peptides. We employed eight calixarenes to systematically study the influence of structure on activation efficiency, which revealed that the scaffold, head group, and alkyl chain are all significant factors for activation efficiency by affecting affinities with the peptide and membrane.


Assuntos
Calixarenos/farmacologia , Peptídeos/metabolismo , Transporte Biológico/efeitos dos fármacos , Calixarenos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular
7.
Molecules ; 26(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34641427

RESUMO

O-GlcNAcylation is a nutrient-driven post-translational modification known as a metabolic sensor that links metabolism to cellular function. Recent evidences indicate that the activation of O-GlcNAc pathway is a potential pro-survival pathway and that acute enhancement of this response is conducive to the survival of cells and tissues. 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-ß-d-pyranoside (SalA-4g), is a salidroside analogue synthesized in our laboratory by chemical structure-modification, with a phenyl ring containing a para-methoxy group and a sugar ring consisting of N-acetylglucosamine. We have previously shown that SalA-4g elevates levels of protein O-GlcNAc and improves neuronal tolerance to ischemia. However, the specific target of SalA-4g regulating O-GlcNAcylation remains unknown. To address these questions, in this study, we have focused on mitochondrial network homeostasis mediated by O-GlcNAcylation in SalA-4g's neuroprotection in primary cortical neurons under ischemic-like conditions. O-GlcNAc-modified mitochondria induced by SalA-4g demonstrated stronger neuroprotection under oxygen glucose deprivation and reoxygenation stress, including the improvement of mitochondrial homeostasis and bioenergy, and inhibition of mitochondrial apoptosis pathway. Blocking mitochondrial protein O-GlcNAcylation with OSMI-1 disrupted mitochondrial network homeostasis and antagonized the protective effects of SalA-4g. Collectively, these data demonstrate that mitochondrial homeostasis mediated by mitochondrial protein O-GlcNAcylation is critically involved in SalA-4g neuroprotection.


Assuntos
Acetilglucosamina/análogos & derivados , Metabolismo Energético , Isquemia/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/química , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetilglucosamina/farmacologia , Animais , Glucose/metabolismo , Glicosilação , Homeostase , Isquemia/metabolismo , Isquemia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley
8.
Biosens Bioelectron ; 192: 113488, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265522

RESUMO

Screening inhibitors of flavin monooxygenase 3 (FMO3) is very important for treating trimethylamine N-oxide (TMAO) derived thrombotic diseases. Herein, focusing on Xuefu Zhuyu decoction (XFZYD) as a Chinese traditional medicine with antithrombotic efficacy, a facile and label-free fluorescence strategy was developed for evaluating the influence of the bioactive ingredients in XFZYD on FMO3 activity through indicator displacement assay. To this end, the optimized supramolecular host-guest (p-sulfonatocalix[4]arene-oxazine 1) reporter pair and FMO3 catalytic system were exploited to determine the influence of the bioactive compounds in XFZYD on the conversion from TMA to TMAO. From the nine compounds tested, naringin, paeoniflorin, ß-ecdysterone, 18ß-glycyrrhizic acid, amygdalin, albiflorin, and saikosaponin A downregulated FMO3 activity and reduced TMAO biosynthesis. Moreover, molecular docking was successfully applied to simulate the optimal conformation of a receptor-ligand complex between FMO3 and all tested compounds except for ß-ecdysterone. Therefore, this approach provides a novel and promising strategy for screening FMO3 inhibitors from Chinese traditional medicine by supramolecular sensing.


Assuntos
Técnicas Biossensoriais , Trombose , Humanos , Metilaminas , Simulação de Acoplamento Molecular , Oxigenases
9.
Neuroreport ; 32(6): 518-524, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788819

RESUMO

Achyranthes bidentata polypeptide k (ABPPk), a powerful active component from a traditional Chinese medicinal herb-Achyranthes bidentata Bl., has exhibited promising neuroprotective activity due to its multiple-targeting capability. However, the effect of ABPPk on the survival, growth and axonal regeneration of spinal cord motor neurons remains unclear. Here, a modified method, which is more optimized for embryonic cells in ambient carbon dioxide levels, was used for acquisition of rat embryonic spinal cord motor neurons with high survival and purity. ABPPk concentration-dependently enhanced the neuronal viability and promoted the neurite outgrowth. Co-culture of motor neurons and skeletal myocytes model indicated that ABPPk enhanced the neuromuscular junction development and maturation. A microfluidic axotomy model was further established for the axonal disconnection, and ABPPk significantly accelerated the axonal regeneration of motor neurons. Furthermore, we demonstrated that the upregulation of three neurofilament protein subunits in motor neurons might be relevant to the mechanisms of the growth-promoting effect of ABPPk. Our findings provide an experimental and theoretical basis for the development of ABPPk as a potential application in the development of treatment strategy for nerve injury diseases.


Assuntos
Achyranthes , Axônios/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Axotomia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Proteína GAP-43/efeitos dos fármacos , Proteína GAP-43/metabolismo , Técnicas In Vitro , Proteínas de Neurofilamentos/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Peptídeos/farmacologia , Traumatismos dos Nervos Periféricos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
10.
Life Sci ; 261: 118473, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971101

RESUMO

AIMS: Electroacupuncture (EA) at ST36 has been verified to ameliorate experimental acute colitis. However, the effect of EA on chronic colitis and its mechanism has not yet been explored. This study aimed to assess the protective effect of EA against chronic colitis and the related mechanisms. MAIN METHODS: Chronic colitis was induced by dextran sulfate sodium (DSS) in C57BL/6 mice, and EA was applied throughout the entire experiment. Colonic inflammation and intestinal barrier integrity were evaluated. Alterations in the gut microbiota were analyzed by 16S rRNA gene sequencing. The fecal microbiota transplantation (FMT) experiment was used to further confirm the effect of the gut microbiota on the barrier protective effect of EA. The potential molecular mechanisms were explored by western blotting. KEY FINDINGS: (1) EA lowered the disease activity index (DAI) and histological scores, decreased the levels of TNFα, IL1ß, IL6 and iNOS, and increased the IL10 level in DSS-induced chronic colitis. (2) EA upregulated the protein expression of ZO-1, Occludin, E-Cadherin and mucin2 (MUC2), reduced the apoptosis and proliferation of intestinal epithelial cells (IECs) and intestinal permeability. (3) EA enhanced the gut microbiota diversity and restored the community structure. (4) Both the low-frequency EA (LEA) FMT and high-frequency EA (HEA) FMT maintained the intestinal barrier integrity. (5) EA promoted activation of the mitogen activated protein kinase (MAPK) signaling pathway. SIGNIFICANCE: EA can relieve chronic experimental colitis, and this effect may depend on activation of the MAPK signaling pathway through modulation of the gut microbiota to preserve the intestinal barrier.


Assuntos
Colite/terapia , Eletroacupuntura , Microbioma Gastrointestinal , Intestinos/patologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana , Transplante de Microbiota Fecal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Permeabilidade
11.
Biomaterials ; 245: 119976, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213362

RESUMO

Photothermal therapy (PTT) normally requires to maintain the temperature of tumor lesions above 50 °C, which potentially induces local inflammation and tumor metastasis. To avoid these side effects, it is vital to achieve effective antitumor efficacy at relatively low temperature (42-45 °C) during the PTT treatment. Herein, we design a polydopamine (PDA)-coated nucleic acid nanogel as a therapeutic complex for siRNA-mediated low-temperature PTT. First, siRNAs that target the heat-shock-protein 70 (Hsp70) serve as crosslinkers to guide the DNA-grafted polycaprolactone (DNA-g-PCL) assemble into nanosized hydrogel particles through nucleic acid hybridization. Thereafter, the obtained siRNA-embedded nanogels are further coated with a thin layer of polydopamine, which not only protects the nanogels against enzymatic degradation but also endows the nanogels with excellent photothermal conversion capacity under near infrared (NIR) light irradiation. After surface PEGylation, this triple shield siRNA delivery complex shows the capability of effective ablating the tumor under relatively mild condition.


Assuntos
Hipertermia Induzida , Ácidos Nucleicos , Indóis , Nanogéis , Fototerapia , Terapia Fototérmica , Polietilenoglicóis , Polietilenoimina , Polímeros , RNA Interferente Pequeno , Temperatura
12.
Brain Res ; 1706: 166-176, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414726

RESUMO

Achyranthes bidentata Bl. (A. bidentata) occupies an important position in traditional Chinese medicine owing to the property of promoting the circulation of blood and removing stasis. Achyranthes bidentata polypeptide k (ABPPk) is one of the active components isolated from A. bidentata. We previously demonstrated that ABPPk has potent neuroprotective effects against neuronal apoptosis both in vitro and in vivo, but the roles and mechanisms of ABPPk on long-term functional recovery after ischemic stroke remain unknown. In the current study, we investigated the neuroprotective effects of ABPPk on filament transient middle cerebral artery occlusion (tMCAO) rats and found that ABPPk reduced the infarct volume and maintained the neuronal integrity in the ischemic penumbra. Moreover, we found that ABPPk might reduce the formation of downstream microthrombus through preventing ischemic-induced oxidative damage of brain endothelial cells and activation of tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1), and NF-κB. ABPPk also inhibited polymorphonuclear leukocytes (PMNs) infiltration and matrix metalloproteinase-2/-9 (MMP-2/-9) activation in the ischemic penumbra. Morris water maze, foot fault test, and modified neurological severity score were assessed for a period of 6 weeks following tMCAO. ABPPk improved long-term recognition abilities and neurological outcomes after stroke compared with saline-treated rats. Taken together, these results suggested that ABPPk is beneficial to the improvement of long-term outcomes after transient cerebral ischemia injury and can be used as a potential neuroprotective agent.


Assuntos
Achyranthes/metabolismo , Isquemia Encefálica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Isquemia Encefálica/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Medicina Tradicional Chinesa , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Trombose/tratamento farmacológico , Trombose/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-29849709

RESUMO

Animal-based traditional medicine not only plays a significant role in therapeutic practices worldwide but also provides a potential compound library for drug discovery. However, persistent hunting and illegal trade markedly threaten numerous medicinal animal species, and increasing demand further provokes the emergence of various adulterants. As the conventional methods are difficult and time-consuming to detect processed products or identify animal species with similar morphology, developing novel authentication methods for animal-based traditional medicine represents an urgent need. During the last decade, DNA barcoding offers an accurate and efficient strategy that can identify existing species and discover unknown species via analysis of sequence variation in a standardized region of DNA. Recent studies have shown that DNA barcoding as well as minibarcoding and metabarcoding is capable of identifying animal species and discriminating the authentics from the adulterants in various types of traditional medicines, including raw materials, processed products, and complex preparations. These techniques can also be used to detect the unlabelled and threatened animal species in traditional medicine. Here, we review the recent progress of DNA barcoding for the identification and authentication of animal species used in traditional medicine, which provides a reference for quality control and trade supervision of animal-based traditional medicine.

14.
Nutrients ; 9(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753972

RESUMO

Oxidative stress is known to impair architecture and function of cells, which may lead to various chronic diseases, and therefore therapeutic and nutritional interventions to reduce oxidative damages represent a viable strategy in the amelioration of oxidative stress-related disorders, including neurodegenerative diseases. Over the past decade, a variety of natural polysaccharides from functional and medicinal foods have attracted great interest due to their antioxidant functions such as scavenging free radicals and reducing oxidative damages. Interestingly, these antioxidant polysaccharides are also found to attenuate neuronal damages and alleviate cognitive and motor decline in a range of neurodegenerative models. It has recently been established that the neuroprotective mechanisms of polysaccharides are related to oxidative stress-related pathways, including mitochondrial function, antioxidant defense system and pathogenic protein aggregation. Here, we first summarize the current status of antioxidant function of food-derived polysaccharides and then attempt to appraise their anti-neurodegeneration activities.


Assuntos
Antioxidantes/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Polissacarídeos/farmacologia , Grão Comestível/química , Fabaceae/química , Frutas/química , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nozes/química , Estresse Oxidativo/efeitos dos fármacos , Chá/química , Verduras/química
15.
Acta Pharm Sin B ; 7(2): 185-192, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28303225

RESUMO

Cimicifugae Rhizoma (Sheng ma) is a Ranunculaceae herb belonging to a composite family and well known in China. has been widely used in traditional Chinese medicine. The Pharmacopoeia of the People׳s Republic of China contains three varieties (Cimicifuga dahurica (Turcz.), Cimicifuga foetida L. and Cimicifuga heracleifolia Kom.) which have been used clinically as "Sheng-ma". However, the chemical constituents of three components of "Sheng-ma" have never been documented. In this study, a rapid method for the analysis of the main components of "Sheng-ma" was developed using ultra-high performance liquid chromatography with quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The present study reveals the major common and distinct chemical constituents of C. dahurica, C. foetida and C. heracleifolia and also reports principal component and statistical analyses of these results. The components were identified by comparing the retention time, accurate mass, mass spectrometric fragmentation characteristic ions and matching empirical molecular formula with that of the published compounds. A total of 32 common components and 8 markers for different "Sheng-ma" components were identified. These findings provide an important basis for the further study and clinical utilities of the three "Sheng-ma" varieties.

16.
Oxid Med Cell Longev ; 2016: 4856761, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27885333

RESUMO

Astragalus membranaceus is a medicinal plant traditionally used in China for a variety of conditions, including inflammatory and neural diseases. Astragalus polysaccharides are shown to reduce the adverse effect of levodopa which is used to treat Parkinson's disease (PD). However, the neuroprotective effect of Astragalus polysaccharides per se in PD is lacking. Using Caenorhabditis elegans models, we investigated the protective effect of astragalan, an acidic polysaccharide isolated from A. membranaceus, against the neurotoxicity of 6-hydroxydopamine (6-OHDA), a neurotoxin that can induce parkinsonism. We show that 6-OHDA is able to degenerate dopaminergic neurons and lead to the deficiency of food-sensing behavior and a shorter lifespan in C. elegans. Interestingly, these degenerative symptoms can be attenuated by astragalan treatment. Astragalan is also shown to alleviate oxidative stress through reducing reactive oxygen species level and malondialdehyde content and increasing superoxide dismutase and glutathione peroxidase activities and reduce the expression of proapoptotic gene egl-1 in 6-OHDA-intoxicated nematodes. Further studies reveal that astragalan is capable of elevating the decreased acetylcholinesterase activity induced by 6-OHDA. Together, our results demonstrate that the protective effect of astragalan against 6-OHDA neurotoxicity is likely due to the alleviation of oxidative stress and regulation of apoptosis pathway and cholinergic system and thus provide an important insight into the therapeutic potential of Astragalus polysaccharide in neurodegeneration.


Assuntos
Astragalus propinquus/química , Neurônios Dopaminérgicos/efeitos dos fármacos , Quempferóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Polissacarídeos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Citoproteção , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Quempferóis/isolamento & purificação , Peroxidação de Lipídeos , Longevidade/efeitos dos fármacos , Degeneração Neural , Fármacos Neuroprotetores/isolamento & purificação , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina , Fitoterapia , Plantas Medicinais , Polissacarídeos/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Tempo
17.
Zhong Yao Cai ; 38(1): 156-9, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26214884

RESUMO

OBJECTIVE: To develop an HPLC-ELSD method for simultaneous determination of Astragaloside IV Astragaloside I, Astragaloside II, Astragaloside III and Isostragaloside II in Astragali Radix and Jinqi Jiangtang tablet. METHODS: The chromatographic conditions were as follows: Grace Apollo C18 column (250 mm x 4. 6 mm, 5 µm), acetonitrile (A) and water(B) as mobile phases for gradient elution, and the flow rate being 1. 0 mL/min. RESULTS: Five components showed good linearity. The average recoveries were between 95% - 105%. Five Astragalosides were determined in twelve batches of Astragali Radix and ten batches of Jinqi Jiangtang tablet. CONCLUSION: This is a specific, sensitive and simple method for simultaneous determination of Astragaloside IV, Astragaloside I Astragaloside II, Astragaloside III and Isostragaloside II in Astragali Radix and Jinqi Jiangtang tablet.


Assuntos
Astrágalo/química , Medicamentos de Ervas Chinesas/química , Saponinas/análise , Triterpenos/análise , Astragalus propinquus , Cromatografia Líquida de Alta Pressão , Saponinas/isolamento & purificação , Comprimidos , Triterpenos/isolamento & purificação
18.
PLoS One ; 9(10): e109923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25334016

RESUMO

An active component has been isolated by reverse-phase high performance liquid chromatography (HPLC) from Achyranthes bidentata Blume polypeptides that are extracted from Achyranthes bidentata Blume, a Chinese medicinal herb. The active component is called ABPPk based on the order of HPLC elution. In this study, we used in vitro and in vivo experimental models of cerebral ischemia to investigate the possible neuroprotective effect of ABPPk. ABPPk treatment promoted neuronal survival and inhibited neuronal apoptosis in primary cortical neurons exposed to oxygen and glucose deprivation and in rats subjected to transient middle cerebral artery occlusion. The role of ABPPk in protection against ischemia-induced neuronal damage might be mediated by mitochondrial-dependent pathways, including modulation of apoptosis-related gene expression, regulation of mitochondrial dysfunction through restoring mitochondrial membrane potential, reducing release of mitochondrial apoptogenic factors, and inhibiting intracellular ROS production. The neuroprotective effect of ABPPk may suggest the possible use of this agent in the treatment and prevention of cerebral ischemic stroke.


Assuntos
Achyranthes , Apoptose/efeitos dos fármacos , Isquemia Encefálica/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
J. physiol. biochem ; 70(3): 735-747, sept. 2014.
Artigo em Inglês | IBECS | ID: ibc-127318

RESUMO

Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca2+]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases


Assuntos
Animais , Ratos , Fármacos Neuroprotetores/farmacocinética , Schisandraceae , Neurônios , Traumatismo por Reperfusão/prevenção & controle , Proteínas Quinases Ativadas por Mitógeno , Apoptose , Isquemia/tratamento farmacológico , Modelos Animais de Doenças , Substâncias Protetoras/farmacocinética , Extratos Vegetais/farmacocinética
20.
J Physiol Biochem ; 70(3): 735-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24986222

RESUMO

Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca(2+)]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Ciclo-Octanos/farmacologia , Lignanas/farmacologia , Fármacos Neuroprotetores/farmacologia , Compostos Policíclicos/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cálcio/metabolismo , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , L-Lactato Desidrogenase/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Medicina Tradicional Chinesa , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fitoterapia , Ratos , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Schisandra , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA