Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 19(1): 49-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34967289

RESUMO

BACKGROUND: The combination of photothermal therapy (PTT) and chemotherapy has proven to be a promising strategy for cancer treatment. Various nanomaterials have shown great potential in combination therapy, including gold, graphene oxide, iron oxide, and other nanoparticles. However, their undefinable toxicity in vivo greatly slowed down their development for clinical applications. OBJECTIVE: The present work aimed to develop a multifunctional nanoparticle for chemo-photothermal therapy composed of acknowledged biocompatible materials. METHODS: A novel biocompatible nanoparticle (HIT-NPs) was self-assembled through the intrinsic interaction between D-α-tocopherol Succinate (TOS), human serum albumin (HSA) and indocyanine green (ICG). Doxorubicin (DOX) was then loaded due to the ion pairing between DOX and TOS. The feasibility of combined chemo-photothermal therapy induced by DOX-loaded HIT-NPs was carefully evaluated. RESULTS: In vitro, HIT-NPs showed no cytotoxicity on human normal liver cells (HL-7702 cells) but obvious killing effects on murine breast cancer cells (4T1 cells). The combined chemo-photothermal therapeutic effect on 4T1 cells was successfully obtained. DOX-loaded HIT-NPs could effectively accumulate in 4T1 subcutaneous tumors after intravenous injection, and the tumor temperature rapidly increased under laser exposure, indicating the feasibility of PTT in vivo. CONCLUSION: The self-assembled HIT-NPs could provide a promising platform for combined chemo- photothermal cancer therapy with full biocompatibility.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Albuminas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Camundongos , Fototerapia , Terapia Fototérmica , Tocoferóis
2.
Bot Stud ; 57(1): 28, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28597438

RESUMO

BACKGROUND: As a highly valued and multiple function tree species, Cyclocarya paliurus is planted and managed for timber production and medical use. However, limited information is available on its genotype selection and cultivation for growth and phytochemicals. Responses of growth and secondary metabolites to light regimes and genotypes are useful information to determine suitable habitat conditions for the cultivation of medicinal plants. RESULTS: Both light regime and provenance significantly affected the leaf characteristics, leaf flavonoid contents, biomass production and flavonoid accumulation per plant. Leaf thickness, length of palisade cells and chlorophyll a/b decreased significantly under shading conditions, while leaf areas and total chlorophyll content increased obviously. In the full light condition, leaf flavonoid contents showed a bimodal temporal variation pattern with the maximum observed in August and the second peak in October, while shading treatment not only reduced the leaf content of flavonoids but also delayed the peak appearing of the flavonoid contents in the leaves of C. paliurus. Strong correlations were found between leaf thickness, palisade length, monthly light intensity and measured flavonoid contents in the leaves of C. paliurus. Muchuan provenance with full light achieved the highest leaf biomass and flavonoid accumulation per plant. CONCLUSIONS: Cyclocarya paliurus genotypes show diverse responses to different light regimes in leaf characteristics, biomass production and flavonoid accumulation, highlighting the opportunity for extensive selection in the leaf flavonoid production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA