Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 194(6): 2528-2541, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35166996

RESUMO

Phosphate concentration above 10 mM reduces the production of many secondary metabolites; however, the phenomenon is not mechanistically understood yet. Specifically, the problem of phosphorus limitation in antibiotic production remains unresolved. This study investigates the phosphorus inhibition effect on spinosad production and alleviates it by calcium and phosphate supplementation to fermentation media. Furthermore, we examined the mechanism of fatty acids-induced increase in polyketides production. Four phosphates that were supplemented into the fermentation media include NaH2PO4, Na2HPO4, KH2PO4, and K2HPO4 and NaH2PO4 was found to be the most effective phosphate. Under the optimal phosphate condition of supplementing 20 mM NaH2PO4 on the fourth day and 5 g/L CaCO3, the maximal spinosad production reached 520 mg/L, showing a 1.65-fold increase over the control treatment. In the NaH2PO4-CaCO3 system, the de novo fatty acid biosynthesis was significantly downregulated while spinosad biosynthesis and ß-oxidation were upregulated. The coordination of de novo fatty acid biosynthesis and ß-oxidation promoted intracellular acetyl-CoA concentration. The results demonstrate that NaH2PO4-CaCO3 combined addition is a simple and effective strategy to alleviate phosphorus inhibition effect through the regulation of fatty acid metabolism and accumulation of immediate precursors. This information improves our understanding of phosphates' influence on the large-scale production of polyketides.


Assuntos
Cálcio , Macrolídeos , Saccharopolyspora/química , Meios de Cultura , Combinação de Medicamentos , Ácidos Graxos , Macrolídeos/farmacologia , Fosfatos/química , Fósforo/química
2.
Appl Microbiol Biotechnol ; 104(24): 10437-10449, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33170328

RESUMO

In this study, we isolated an endophytic Streptomyces sp. strain, WP-1, from surface-sterilized barks of Pinus dabeshanensis, an endangered Chinese plant. WP-1 showed strong antifungal activity against diverse pathogenic fungi, such as Fusarium oxysporum, Rhizoctonia solani, Phytophthora infestan, and Candida albicans. Based on phylogenetic analyses, preliminary identification suggested that the WP-1 strain belonged to the genus Streptomyces. Column chromatogram and HPLC were employed to isolate the primary antifungal component from the culture medium of WP-1, and it was identified as the methylpentaene macrolide antibiotic, fungichromin (FC). In this study, for the first time, using in vitro bioassay studies, we revealed that FC strongly inhibited mycelial growth and conidia germination in Fusarium oxysporum. The median inhibitory concentration of FC was found to be 3.80 mg/L. The fermentation conditions of the WP-1 strain were further investigated to improve FC production. We found that supplementation of the synthetic medium with oils (soybean oil, oleic acid, and so on), particularly during the initial stage of fermentation, significantly increased the FC yield. Ammonium-trapping agent (magnesium phosphate) was used as an additive to increase FC yield to 5741.7 mg/L. It was 2.9-fold more as compared to the highest FC yield reported so far where Streptomyces padanus PMS-702 was used for FC production. KEY POINTS: • Isolation and identification of a fungichromin-producing endophytic actinomycete WP-1 strain. • Fungichromin production was significantly improved via oils and ammonium-trapping agents addition. • Discovery of the antifungal activity of fungichromin against Fusarium oxysporum.


Assuntos
Fusarium , Pinus , Streptomyces , Acetazolamida/análogos & derivados , Antifúngicos/farmacologia , Endófitos , Macrolídeos , Filogenia , Polienos , Rhizoctonia , Tetraciclinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA