Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Mol Pharmacol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37881074

RESUMO

BACKGROUND: Cholangiopathies comprise a spectrum of diseases without curative treatments. Pharmacological treatments based on bile acid (BA) metabolism regulation represent promising therapeutic strategies for the treatment of cholangiopathies. Gentiopicroside (GPS), derived from the Chinese medicinal herb Gentianae Radix, exerts pharmacological effects on bile acid metabolism regulation and oxidative stress. OBJECTIVE: The present study aims to investigate the effect of GPS on 3,5-diethoxycarbonyl-1,4dihydrocollidine (DDC)-induced cholangiopathy. METHODS: Two independent animal experiments were designed to evaluate the comprehensive effect of GPS on chronic DDC diet-induced cholangiopathy, including bile duct obliteration, ductular reaction, BA metabolism reprogramming, liver fibrosis, oxidative stress and inflammatory responses. RESULTS: In the first pharmacological experiment, three doses of GPS (5, 25 and 125 mg/kg) were injected intraperitoneally into mice fed a DDC diet for 14 days. DDC induced a typical ductular reaction, increased periductal fibrosis and mixed inflammatory cell infiltration in the portal areas. GPS treatment showed dose-dependent improvements in the ductular reaction, BA metabolism, fibrosis, oxidative stress and inflammatory response. In the second experiment, a high dose of GPS was injected intraperitoneally into control mice for 28 days, resulting in no obvious histologic changes and significant serologic abnormalities in liver function. However, GPS inhibited DDC-induced oxidative stress, serum and hepatic BA accumulation, proinflammatory cytokine production, and immunocyte infiltration. Specifically, the GPS-treated groups showed decreased infiltration of monocyte-derived macrophages and CD4+ and CD8+ T lymphocytes, as well as preserved Kupffer cells. CONCLUSION: GPS alleviated chronic DDC diet-induced cholangiopathy disorder by improving the ductular reaction, periductal fibrosis, oxidative stress and inflammatory response. Its dosage-dependent pharmacological effects indicated that GPS warrants its further evaluation in clinical trials for cholangiopathy.

2.
J Tradit Complement Med ; 13(4): 345-357, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396159

RESUMO

Purpose: Cholestatic liver diseases are groups of hepatobiliary diseases without curative drug-based therapy options. Regulation of bile acid (BA) metabolism, hepatoperiductal fibrosis, and inflammatory response indicated present novel methods for the treatment of cholestatic liver disease. Costunolide (COS) from herb Saussurea lappa exerts a pharmacological effect of regulation of BA metabolism, liver fbrosis and inflammatory response. The present study aimed to clarify the pharmacodynamic effects of COS against the murine model of cholestatic liver disease. Methods: We established a murine model of cholestatic liver disease through chronic feeding of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 28 days. Two independent in vivo experiments were designed to reveal the pharmacological effect of COS against cholestatic liver disease. In the first experiment, two dosages of COS (10 and 30 mg/kg) were intraperitoneally injected into model mice daily for 14 days. In the second experiment, high dosage of COS (30 mg/kg) was intraperitoneally injected into control and model mice daily for 28 days. Results: In the evaluation of the hepatoprotective effect of COS, COS showed dosage-dependent improvement of cholestatic liver disease, including ductular reaction, hepatoperiductal fibrosis, and inflammatory response. The mechanism of COS-mediated hepatoprotective effects mainly relies on the regulation of BA metabolism, and the inflammatory response. DDC diet feed induced hepatic BA metabolism, transport and circulation dysfunction. COS treatment not only regulated the BA metabolism and transport gene, but also reprogrammed hepatic primary and secondary BA concentrations. DDC induced hepatic infiltrated monocytes derived macrophages and lymphocytes were inhibited, while Kupffer cells were preserved by COS treatment. The liver elevating inflammatory cytokines of DDC diet feed were alleviated by COS. Moreover, high dosage of 30 mg/kg COS treatment for 28 days resulted in no significant serological changes and no obvious hepatic histopathological changes when compared with control mice. Conclusion: COS protected against DDC diet feeding-induced cholestatic liver disease since COS regulated BA metabolism, ductular reaction, hepatoperiductal fibrosis and inflammatory response. COS is suggested as a potential natural product for the treatment of cholestatic liver disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA