Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117487, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030024

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a life-threatening condition with high morbidity and mortality, underscoring the urgent need for novel treatments. Monochasma savatieri Franch. (LRC) is commonly used clinically to treat wind-heat cold, bronchitis, acute pneumonia and acute gastroenteritis. However, its role in the treatment of ALI and its mechanism of action are still unclear. AIM OF THE STUDY: This study aimed to demonstrate the pharmacological effects and underlying mechanisms of LRC extract, and provide important therapeutic strategies and theoretical basis for ALI. MATERIALS AND METHODS: In this study, a research paradigm of integrated pharmacology combining histopathological analysis, network pharmacology, metabolomics, and biochemical assays was used to elucidate the mechanisms underlaying the effects of LRC extract on LPS-induced ALI in BALB/c mice. RESULTS: The research findings demonstrated that LRC extract significantly alleviated pathological damage in lung tissues and inhibited apoptosis in alveolar epithelial cells, and the main active components were luteolin, isoacteoside, and aucubin. Lung tissue metabolomic and immunohistochemical methods confirmed that LRC extract could restore metabolic disorders in ALI mice by correcting energy metabolism imbalance, activating cholinergic anti-inflammatory pathway (CAP), and inhibiting TLR4/NF-κB signaling pathway. CONCLUSIONS: This study showed that LRC extract inhibited the occurrence and development of ALI inflammation by promoting the synthesis of antioxidant metabolites, balancing energy metabolism, activating CAP and suppressing the α7nAChR-TLR4/NF-κB p65 signaling pathway. In addition, our study provided an innovative research model for exploring the effective ingredients and mechanisms of traditional Chinese medicine. To the best of our knowledge, this is the first report describing the protective effects of LRC extract in LPS-induced ALI mice.


Assuntos
Lesão Pulmonar Aguda , Pneumonia , Animais , Camundongos , NF-kappa B/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Pulmão/patologia , Pneumonia/patologia
2.
Biomed Pharmacother ; 166: 115417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666179

RESUMO

BACKGROUND AND AIMS: Drug-induced liver injury remains a critical issue to hinder clinical application of Tripterygium Glycosides Tablets (TGTs) for rheumatoid arthritis (RA) therapy. Combination of TGTs with Total Glucosides of Peony (TGP) may be the most common therapeutic strategy for enhancing TGTs' efficacy and reducing its toxicity. Herein, we aimed to investigate the efficacy-enhancing and toxicity-reducing properties and mechanisms of TGT-TGP combination. METHODS: Both TGT-induced acute and chronic liver injury animal models were established. ELISA, transmission electron microscopy, immunohistochemistry, western blot and quantitative PCR were performed to determine the efficacy, toxicity and regulatory mechanisms of TGT-TGP combination. RESULTS: The compatibility of TGP significantly reduced the abnormal serum ALT and AST levels, and improved liver histopathological changes in both acute and chronic DILI animal models induced by TGTs, with the most effective dosage of TGP-M (medium-dose TGP, 450 mg/kg). Additionally, TGP and TGT synergistically alleviated joint swelling and improved the elevation of serum inflammatory factors, in line with the positive changes in joint histopathological features of collagen induced arthritis mice, with the same effective dosage of TGP-M following 5 weeks' drug combination treatment. Mechanically, TGT significantly increased the number of autophagosomes and the expression of LC3II protein while reducing p62 protein expression in the liver tissues, which were significantly reversed by the compatibility with TGP, similar to the findings based on the inflamed joint tissues. CONCLUSIONS: These findings suggest an enhanced efficacy with reduced toxicity of TGT by the compatibility with TGP for RA therapy, possibly through regulating various autophagy-related proteins.


Assuntos
Artrite Experimental , Artrite Reumatoide , Glicosídeos Cardíacos , Paeonia , Animais , Camundongos , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Tripterygium , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico
3.
Chin Med ; 18(1): 48, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143094

RESUMO

BACKGROUND: Cold-dampness Syndrome (RA-Cold) and Hot-dampness Syndrome (RA-Hot) are two distinct groups of rheumatoid arthritis (RA) patients with different clinical symptoms based on traditional Chinese medicine (TCM) theories and clinical empirical knowledge. However, the biological basis of the two syndromes has not been fully elucidated, which may restrict the development of personalized medicine and drug discovery for RA diagnosis and therapy. METHODS: An integrative strategy combining clinical transcriptomics, phenomics, and metabolomics data based on clinical cohorts and adjuvant-induced arthritis rat models was performed to identify novel candidate biomarkers and to investigate the biological basis of RA-Cold and RA-Hot. RESULTS: The main clinical symptoms of RA-Cold patients are joint swelling, pain, and contracture, which may be associated with the dysregulation of T cell-mediated immunity, osteoblast differentiation, and subsequent disorders of steroid biosynthesis and phenylalanine metabolism. In contrast, the main clinical symptoms of RA-Hot patients are fever, irritability, and vertigo, which may be associated with various signals regulating angiogenesis, adrenocorticotropic hormone release, and NLRP3 inflammasome activation, leading to disorders of steroid biosynthesis, nicotinamide, and sphingolipid metabolism. IL17F, 5-HT, and IL4I1 were identified as candidate biomarkers of RA-Cold, while S1P and GLNS were identified as candidate biomarkers of RA-Hot. CONCLUSIONS: The current study presents the most comprehensive metabonomic and transcriptomic profiling of serum, urine, synovial fluid, and synovial tissue samples obtained from RA-Cold and RA-Hot patients and experimental animal models to date. Through the integration of multi-omics data and clinical independent validation, a list of novel candidate biomarkers of RA-Cold and RA-Hot syndromes were identified, that may be useful in improving RA diagnosis and therapy.

4.
Biomed Pharmacother ; 160: 114325, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36738501

RESUMO

BACKGROUND AND AIMS: Drug-induced liver injury (DILI) remains a critical issue and a hindrance to clinical application of Tripterygium Glycosides Tablet (TGT) despite its favorable therapeutic efficacy in rheumatoid arthritis. Herein, we aimed to elucidate the molecular mechanisms underlying TGT-induced hepatotoxicity. METHODS: Chemical profiling of TGT was identified by UPLC-Q/TOF-MS/MS and its putative targets were predicted based on chemical structure similarity calculation. Following "DILI-related gene-TGT putative target" interaction network construction, a list of key network targets was screened according to nodes' topological importance and functional relevance. Both in vivo and in vitro experiments were performed to determine drug hepatotoxicity and the underlying mechanisms. RESULT: A total of 49 chemical components and 914 putative targets of TGTs were identified. Network calculation and functional modularization screened RAS-ERK and mTOR signalings-associated autophagy to be one of the candidate targets of TGT-induced hepatotoxicity. Experimentally, TGT significantly activated RAS-ERK axis, elevated the number of autophagosomes and the expression of LC3II protein, but reduced the expression of p62 protein and suppressed mTOR phosphorylation in the liver tissues of TGT-induced acute liver injury mice and chronic liver injury mice in vivo and AML12 cells in vitro. Moreover, TGT and mL-098 (an activator of RAS) co-treatment reduced AML12 cell viability via regulating autophagy and TGT-induced liver injury-related indicators more dramatically than TGT treatment alone, whereas Salirasib (an inhibitor of RAS) had an opposite effect. CONCLUSION: RAS-ERK-mTOR cross-talk may play a crucial role in TGT-induced hepatocyte autophagy, offering a promising target for developing novel therapeutics to combat TGT-induced hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Camundongos , Animais , Tripterygium/química , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Autofagia , Comprimidos/química , Serina-Treonina Quinases TOR , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
5.
Phytomedicine ; 104: 154216, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35749826

RESUMO

BACKGROUND: Activation of immune system in rheumatoid arthritis (RA) consumes amount of energy, and the energy metabolic signals may be a potential target for RA therapy. Baihu-Guizhi decoction (BHGZD) achieves satisfactory therapeutic effects in RA in clinics by recovering the adjacent articular cartilage and bone destruction, and abnormal articular temperature. However, its pharmacological material basis and molecular mechanisms have not been fully elucidated. PURPOSE: This study focused on exploring the potential acting mechanism of BHGZD against RA, and identifying its main bioactive compounds (BACs) of the combination of mangiferin and glycyrrhizic acid. METHODS: Key putative targets of BHGZD acting on adjuvant-induced arthritis (AIA)-M rats were screened by the transcriptomic profiling of the whole blood cells and synovium tissues collected from rats in normal control, AIA-M model and AIA-M-BHGZD treatment groups. Then, BACs of BHGZD against RA were identified using Ultra Performance Liquid Chromatography-Mass spectrum/Mass spectrum, molecular docking, surface plasmon resonance and pharmacokinetic analysis. In vivo experiments based on AIA-M rats and in vitro experiments based on 3T3-L1 preadipocytes were performed to verify the pharmacological effects of BACs against RA and the corresponding mechanisms. RESULTS: PKA-ADCY5-PPARγ-PGC 1α-UCP1-PRDM16 signal axis was demonstrated to be the candidate targets of BHGZD against RA and was involved in maintaining the balance of thermogenesis and energy metabolism, according to the transcriptional regulatory network analysis based on "herbs-putative targets-disease interaction network". Then, mangiferin from Rhizoma Anemarrhenae and glycyrrhizic acid from Radix Glycytthizae were identified as the main BACs of BHGZD against RA due to their highly accumulation in the blood in vivo, strong binding affinities with the two candidate targets of BHGZD against RA-ADCY5 and PPARγ, as well as the in vivo and in vitro strong regulation effects on energy metabolism disturbance. CONCLUSIONS: These findings offer evidence that the combination of mangiferin and glycyrrhizic acid from BHGZD may be a promising candidate drug for RA therapy, and also provide an important reference for the development and modernization of traditional Chinese formulae.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Animais , Artrite Reumatoide/tratamento farmacológico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/química , Metabolismo Energético , Ácido Glicirrízico/farmacologia , Simulação de Acoplamento Molecular , PPAR gama , Ratos , Índice de Gravidade de Doença , Termogênese , Xantonas
6.
J Ethnopharmacol ; 284: 114777, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34737012

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Physalin B (PB) is an active constituent of Physalis alkekengi L. var. Franchetii, which is a traditional medicine for clearing heat and detoxification, resolving phlegm, and diuresis. It has been commonly applied to treat sore throat, phlegm-heat, cough, dysuria, pemphigus, and eczema. AIM OF STUDY: Physalin B has shown efficacy as an anti-acute lung injury (ALI) agent previously; however, its mechanisms of action remain unclear. In the present study, we established a lipopolysaccharide-induced septic ALI model using BALB/c mice to further confirm the therapeutic potential of PB and to assess the underlying molecular mechanisms. MATERIALS AND METHODS: We used 75% ethanol and macroporous resin for extraction, separation, and enrichment of PB. The LPS-induced ALI mouse model was used to determine anti-inflammatory effects of PB. The severity of acute lung injury was evaluated by hematoxylin and eosin staining, wet/dry lung ratio, and myeloperoxidase (MPO) activity in lung tissue. An automatic analyzer was used to measure the arterial blood gas index. Protein levels of pro-inflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung tissue was measured using an ELISA. Quantitative RT-PCR was used to measure changes in RNA levels of pro-inflammatory cytokines in the lungs. A fluorometric assay kit was used for determination of apoptosis-related factors to assess anti-apoptotic effects of PB. Western blotting was used to assess levels of key pathway proteins and apoptosis-related proteins. Connections between the pathways were tested through inhibitor experiments. RESULTS: Pretreatment with PB (15 mg kg-1 d-1, i.g.) significantly reduced lung wet/dry weight ratios and MPO activity in blood and BALF of ALI mice, and it alleviated LPS-induced inflammatory cell infiltration in lung tissue. The levels of pro-inflammatory factors TNF-α, IL-6, and IL-1ß and their mRNA levels in blood, BALF, and lung tissue were reduced following PB pretreatment. PB pretreatment also downregulated the apoptotic factors caspase-3, caspase-9, and apoptotic protein Bax, and it upregulated apoptotic protein Bcl-2. The NF-κB and NLRP3 pathways were inhibited through activation of the PI3K/Akt pathway due to PB pretreatment, whereas administration of PI3K inhibitors increased activation of these pathways. CONCLUSIONS: Taken together, our results suggest that the anti-ALI properties of PB are closely associated with the inactivation of NF-κB and NLRP3 by altering the PI3K/Akt pathway. Furthermore, our findings provide a novel strategy for application of PB as a potential agent for treating patients with ALI. To the best of our knowledge, this is the first study to elucidate the underlying mechanism of action of PB against ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Secoesteroides/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , NF-kappa B/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Physalis/química , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secoesteroides/química
7.
Nat Prod Res ; 35(8): 1274-1280, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31343265

RESUMO

Two new hexenol glycosides, (Z)-hex-3-en-1-ol O-ß-d-xylcopyranosyl-(1-6)-ß -d-glucopyranosyl-(1-2)-ß-d-glucopyranoside (1) and (E)-hex-3-en-1-ol O-ß-d-xylcopyranosyl-(1-6)-ß-d-glucopyranosyl-(1-2)-ß-d-glucopyranoside (2), were isolated from the 50% ethanol elution of macroporous resin of Physalis alkekengi var. franchetii. Their structures were established by detailed spectroscopic analysis, including extensive 2D-NMR data. This is the first time to report the (Z) and (E) 3-hexenol glycosides from Physalis alkekengi var. franchetii.


Assuntos
Antibacterianos/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Physalis/química , Antibacterianos/química , Avaliação Pré-Clínica de Medicamentos , Flores/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hexanóis/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Resinas Vegetais/química , Espectrometria de Massas por Ionização por Electrospray
8.
Phytomedicine ; 78: 153288, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32782218

RESUMO

BACKGROUND: Timosaponin BⅡ (TBⅡ), one of the primary bioactive compounds from Anemarrhena asphodeloides Bunge, possesses potential cardioprotective effects. However, the mechanism underlying TBⅡ-mediated cardioprotection, especially the involvement of endoplasmic reticulum stress, remains largely unknown. PURPOSE: This study was designed to evaluate the role of TBⅡ in myocardial injury protection and explore its possible mechanisms. METHODS: In vivo models of isoproterenol-induced myocardial injury and H2O2-induced cytotoxicty were established to investigate the effect of anti-myocardial injury of TBⅡ. The potential mechanisms were investigated in vitro and in vivo using multiple detection methods like electrocardiography, histo-pathological examination, JC-1 staining, TUNEL staining, ELISA technology, and western blot analysis. RESULTS: In vivo study revealed that TBⅡ improved electrocardiography and heart vacuolation, reduced myocyte apoptosis, and improved the antioxidant potential. In vitro investigation demonstrated that TBⅡ pretreatment inhibited ER stress-mediated apoptosis pathways. Further investigation of the underlying mechanisms revealed that TBⅡ prevented H2O2-induced H9c2 cardiomyocytes injury by the PI3K/Akt pathways, whereas the addition of LY294002, the pharmacologic antagonist of PI3K, attenuated TBⅡ-induced expression of apoptotic protein and cytoprotective effects. CONCLUSION: These results suggested that TBⅡ protects against myocardial injury in vitro and enhances cellular defense capacity by inhibiting ER stress-mediated apoptosis pathways in vivo by activating the PI3K/Akt pathways.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Saponinas/farmacologia , Esteroides/farmacologia , Animais , Apoptose/fisiologia , Células Cultivadas , Cromonas/farmacologia , Eletrocardiografia , Estresse do Retículo Endoplasmático/fisiologia , Peróxido de Hidrogênio/toxicidade , Isoproterenol/toxicidade , Masculino , Morfolinas/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley
9.
J Cell Mol Med ; 24(9): 5039-5056, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220053

RESUMO

Acute lung injury (ALI) is an important cause of mortality of patients with sepsis, shock, trauma, pneumonia, multiple transfusions and pancreatitis. Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) has been extensively used in Chinese folk medicine because of a good therapeutic effect in respiratory diseases. Here, an integrated approach combining network pharmacology, proton nuclear magnetic resonance-based metabolomics, histopathological analysis and biochemical assays was used to elucidate the mechanism of PAF against ALI induced by lipopolysaccharide (LPS) in a mouse model. We found that the compounds present in PAF interact with 32 targets to effectively improve the damage in the lung undergoing ALI. We predicted the putative signalling pathway involved by using the network pharmacology and then used the orthogonal signal correction partial least-squares discriminant analysis to analyse the disturbances in the serum metabolome in mouse. We also used ELISA, RT-qPCR, Western blotting, immunohistochemistry and TUNEL assay to confirm the potential signalling pathways involved. We found that PAF reduced the release of cytokines, such as TNF-α, and the accumulation of oxidation products; decreased the levels of NF-κB, p-p38, ERK, JNK, p53, caspase-3 and COX-2; and enhanced the translocation of Nrf2 from the cytoplasm to the nucleus. Collectively, PAF significantly reduced oxidative stress injury and inflammation, at the same time correcting the energy metabolism imbalance caused by ALI, increasing the amount of antioxidant-related metabolites and reducing the apoptosis of lung cells. These observations suggest that PAF may be an effective candidate preparation alleviating ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Physalis/metabolismo , Extratos Vegetais/farmacologia , Animais , Antioxidantes/uso terapêutico , Apoptose , Química Farmacêutica/métodos , Lipopolissacarídeos/metabolismo , Lesão Pulmonar/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Medicina Tradicional Chinesa , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Análise Multivariada , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Resultado do Tratamento
10.
Pharmacol Res ; 156: 104759, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32200026

RESUMO

Acute lung injury (ALI), a severe and life-threatening inflammation of the lung, with high morbidity and mortality, underscoring the urgent need for novel treatments. Ge-Gen-Qin-Lian decoction (GQD), a classic Chinese herbal formula, has been widely used to treat intestine-related diseases in the clinic for centuries. In recent years, a growing number of studies have found that GQD has a favorable anti-inflammatory effect. With the further study on the viscera microbiota, the link between the lungs and the gut-the gut-lung axis has been established. Based on the theory of the gut-lung axis, we used systems pharmacology to explore the effects and mechanisms of GQD treatment in ALI. Hypothesizing that GQD inhibits ALI progression, we used the experimental model of lipopolysaccharide (LPS)-induced ALI in Balb/c mice to evaluate the therapeutic potential of GQD. Our results showed that GQD exerted protective effects against LPS-induced ALI by reducing pulmonary edema and microvascular permeability. Meanwhile, GQD can downregulate the expression of LPS-induced TNF-α, IL-1ß, and IL-6 in lung tissue, bronchoalveolar lavage fluid (BLAF), and serum. To further understand the molecular mechanism of GQD in the treatment of ALI, we used the network pharmacology to predict the disease targets of the active components of GQD. Lung tissue and serum samples of the mice were separately analyzed by transcriptomics and metabolomics. KEGG pathway analysis of network pharmacology and transcriptomics indicated that PI3K/Akt signaling pathway was significantly enriched, suggesting that it may be the main regulatory pathway for GQD treatment of ALI. By immunohistochemical analysis and apoptosis detection, it was verified that GQD can inhibit ALI apoptosis through PI3K/Akt signaling pathway. Then, we used the PI3K inhibitor LY294002 to block the PI3K/Akt signaling pathway, and reversely verified that the PI3K/Akt signaling pathway is the main pathway of GQD anti-ALI. In addition, differential metabolites in mice serum samples indicate that GQD can inhibit the inflammatory process of ALI by reversing the imbalance of energy metabolism. Our study showed that, GQD did have a better therapeutic effect on ALI, and initially elucidated its molecular mechanism. Thus, GQD could be exploited to develop novel therapeutics for ALI. Moreover, our study also provides a novel strategy to explore active components and effective mechanism of TCM formula combined with TCM theory to treat ALI.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Pulmão/efeitos dos fármacos , Biologia de Sistemas , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metabolômica , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Edema Pulmonar/prevenção & controle , Transdução de Sinais , Transcriptoma
11.
Biomed Pharmacother ; 122: 109706, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918277

RESUMO

Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Materia Medica/farmacologia , Materia Medica/uso terapêutico , Animais , Povo Asiático , Humanos , Medicina Tradicional Chinesa/métodos
12.
Int J Biol Macromol ; 155: 995-1002, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712158

RESUMO

CALB-3, a purified acidic hetero-polysaccharide isolated from Fructus aurantii, has been shown to exert cardioprotective effects in vitro. Recently, we investigated the protective effects of CALB-3 on myocardial injury and its possible mechanisms of action using a rat model of myocardial ischemia. In this study, a myocardial ischemia model was established via intragastric administration of 2 mg/kg isoproterenol (ISO) to male Sprague-Dawley rats (200-220 g) daily for 3 days. We found that pretreatment with CALB-3 (50, 100, and 200 mg/kg, i.g.) daily for 21 days prevented ISO-induced myocardial damage, including improvement in electrocardiographic parameters, and decrease in serum cardiac enzymes, heart vacuolation, and TUNEL-positive cells. We used western blotting to identify the underlying mechanisms and determine the possible signal pathways involved. We found that CALB-3 pretreatment prevented apoptosis, increased the expression of antioxidant enzymes, and enhanced the binding of Nrf2 to the antioxidant response element. In addition, CALB-3 activated the phosphorylation of PI3K/Akt and ERK to increase the cytoprotective effect. Overall, our results show that CALB-3 is a promising polysaccharide for protecting against myocardial injury induced by ISO.


Assuntos
Cardiotônicos/farmacologia , Citrus/química , Isoproterenol/toxicidade , Isquemia Miocárdica/prevenção & controle , Estresse Oxidativo , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Masculino , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA