Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Revista
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 9: e11048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777531

RESUMO

Cattle-yak, a hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), inhabit the Qinghai-Tibet Plateau at an altitude of more than 3,000 m and obtain nutrients predominantly through grazing on natural pastures. Severe shortages of pasture in the cold season leads to reductions in the weight and disease resistance of grazing cattle-yak, which then affects their production performance. This study aimed to investigate the effect of supplementary feeding during the cold season on the rumen microbial community of cattle-yak. Six cattle-yak (bulls) were randomly divided into two groups-"grazing + supplementary feeding" (G+S) (n = 3) and grazing (G) (n = 3)-and rumen microbial community structure (based on 16S rRNA sequencing), volatile fatty acids (VFAs), and ruminal epithelial sodium ion-dependent glucose transporter 1 (SGLT1) expression were assessed. There were significant differences in the flora of the two groups at various taxonomic classification levels. For example, Bacteroidetes, Rikenellaceae, and Rikenellaceae_RC9_gut_group were significantly higher in the G+S group than in the G group (P < 0.05), while Firmicutes and Christensenellaceae_R-7_group were significantly lower in the G+S group than in the G group (P < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) analyses revealed that functions related to carbohydrate metabolism and energy production were significantly enriched in the G+S group (P < 0.05). In addition, the concentration of total VFAs, along with concentrations of acetate, propionate, and butyrate, were significantly higher in the G+S group than in the G group (P < 0.05). Furthermore, SGLT1 expression in ruminal epithelial tissue was significantly lower in the G+S group (P < 0.01). Supplementary feeding of cattle-yak after grazing in the cold season altered the microbial community structure and VFA contents in the rumen of the animals, and decreased ruminal epithelial SGLT1 expression. This indicated that supplementary feeding after grazing aids rumen function, improves adaptability of cattle-yak to the harsh environment of the Qinghai-Tibet Plateau, and enhances ability of the animals to overwinter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA