Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329992

RESUMO

The ectoparasitic mite, Varroa destructor is the most serious widespread pest of managed honeybees (Apis mellifera). Several acaricide products, which include essential oils, have been proposed for mite control. In this study, we aimed to apply atmospheric-pressure plasma to modify a cardboard piece surface in order to prolong the delivery of essential oils for controlling Varroa in honeybee colonies. Absorption capacity, release rates and evaporation rates of essential oils were determined. Cardboard piece showed a higher absorption capacity of cinnamon compared to citronella and clove. Surface modification of cardboard pieces using argon plasma at different gas flow rates and treatment durations, significantly affected the absorption of clove oil. Additionally, the release rate of cinnamon, citronella and clove was significantly enhanced after argon plasma treatments. Evaporation of cinnamon was dramatically increased by plasma treatment at 6-h of incubation. The highest evaporation rate was obtained by plasma-treated cardboard piece at a gas flow rate of 0.5 Lpm for 60 s (0.2175 ± 0.0148 µl/g•h). Efficiency of plasma-treated cardboard piece, impregnated with essential oils, was also investigated for Varroa control in honeybee colonies. In the first experiment, formic acid 65% (v/v) showed the highest efficiency of 90.60% and 81.59% with the percent of mite infestation was 0.23 ± 0.13% and 0.47 ± 0.19% at 21 and 35 days, respectively after treatment. The efficacy of cardamon oil (5% (v/v)) delivered using plasma-treated cardboard pieces was 57.71% (0.70 ± 0.16% of mite infestation) at day 21 of experiment. However, the delivery of cardamon oil at the concentration of 1% and 5% (v/v) by untreated cardboard piece had 16.93% and 24.05% of efficacy to control mites. In the 2nd experiment, the application of plasma-treated cardboard pieces impregnated with 5% (v/v) clove oil induced a 38.10% reduction in the population of Varroa mites followed by 5% (v/v) of cardamon with 30% efficiency. Although, the infestation rate of Varroa in colonies was not significant different between treatments, essential oils delivered using plasma-treated cardboard pieces tended to decrease Varroa population in the treated colonies. Hence, atmospheric-pressure plasma for the modification of other materials, should be further investigated to provide alternative control treatment applications against honeybee mites.


Assuntos
Acaricidas , Lamiaceae , Óleos Voláteis , Gases em Plasma , Escabiose , Varroidae , Abelhas , Animais , Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Óleo de Cravo , Gases em Plasma/farmacologia
2.
Front Pharmacol ; 14: 1100825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778018

RESUMO

Background: Cancer is one of the top two leading causes of death worldwide. Ethnobotanical research, it is one of methods, which is able to discover effective anticancer drugs based on "prototype" of indigenous people's historical experiences and practices. The rhizomes of Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. have been used as botanical drugs to treat cancer by Yi, Bai, Dai, and Naxi ethnic groups in Yunnan, China, where this species is widely cultivated in a large scale in Yunnan. Materials and methods: To identify the substances of anticancer activities based on indigenous medicine knowledge, chromatography was performed to separate saponins from the rhizomes of P. polyphylla var. yunnanensis, followed by spectroscopy to determine the structure of six isolated saponins. The cytotoxicity of five extracts and six pure compounds were evaluated by MTS method. Quantitative determination of total saponins of P. polyphylla var. yunnanensis was analyzed by HPLC. Cell cycle assay, apoptosis assay, and mitochondrial membrane potential were used to evaluate the pro-apoptotic activity in vitro. Results: Five extracts and six pure saponins showed significant inhibitory cytotoxic activities of three human liver cancer cell lines (SMMC-7721, HepG2, and SK-HEP-1) and one non-small-cell lung cancer cell line (A549). The contents of Paris saponins I, II, and VII were 6.96% in the rhizomes of P. polyphylla var. yunnanensis, much higher than Chinese Pharmacopoeia standards (0.6%). Six saponins induced significant apoptosis and cell cycle arrest in three human cancer cell lines (A549, SMMC-7721, and HepG2), which was associated with the loss of mitochondrial membrane potential. Conclusion: The result of this study support that cultivated P. polyphylla var. yunnanensis could be a substitute for wild resource as an anticancer medicine based on indigenous medicine knowledge.

3.
J Invertebr Pathol ; 186: 107688, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728218

RESUMO

Nosema disease is one factor that can cause colony decline in honeybees (Apis mellifera L.) worldwide. Nosema ceranae has outcompeted Nosema apis in the Western honeybee (A. mellifera) which is its original host. Fumagilin is an effective antibiotic treatment to control Nosema infection but currently it is forbidden in many countries. In this study, 12 plant extracts were evaluated for their toxicity to adult bees and antimicrosporidian activity under laboratory and field conditions. N. ceranae-infected adult bees were fed ad libitum with 50% sucrose solution containing 1% and 5% (w/v) of each plant extract. Bee mortality in N. ceranae-infected groups fed with plant extracts was higher than that in the control group treated with fumagilin. The results demonstrated that 9 of 12 extracts had high antimicrosporidian activity against N. ceranae and their efficacies were comparable to fumagilin. Spore reduction in infected bees was 4-6 fold less after extract treatment. Following laboratory screening, Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos were tested in honeybee colonies. Plant extracts of 2% concentration (w/v) inhibited the development of Nosema spores after 30 days of treatment. At the end of experiment (90 days), spores in the plant extract treated groups were lower than in group treated with fumagilin but there was no significant difference. Although, extracts tested in this study showed high toxicity to bee in laboratory cages, they did not show negative affects on bees under whole colony conditions. Therefore, the effectiveness of plant extracts tested in this study was notable and warrants further study as potential Nosema control agents in honey bees. Plant extracts would offer a non-antibiotic alternative for Nosema control and help reduce the overuse of antibiotics in livestock.


Assuntos
Abelhas/microbiologia , Fungicidas Industriais/farmacologia , Nosema/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Fungicidas Industriais/química , Nosema/fisiologia , Extratos Vegetais/química
4.
PLoS One ; 15(11): e0242560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206720

RESUMO

Many indigenous fermented foods of Northern Thailand and neighbouring regions have traditionally been known for their health benefits. In this study, we explored the communities of bacteria in selected fermented foods which are commonly consumed among ethnic groups around Northern Thailand, for which information on their microbial compositions or their functional properties is still limited. The selected food groups included Thua Nao (alkaline fermented soybean product), Nham (fermented pork sausage/loaf), Nam phak (fermented Chinese cabbage) and Miang (fermented leaves from Miang Tea trees). Bacteria in these fermented foods were isolated and enumerated. Bacterial communities were determined using a culture-independent (pyrosequencing) approach. Lactic acid bacteria were recovered from all of these fermented food samples, with levels ranging from 3.1 to 7.5 log CFU/g throughout the fermentation processes. Analysis of the 16S rRNA gene from the fermented food samples using 454-pyrosequencing resulted in 113,844 sequences after quality evaluation. Lactic acid bacteria were found in high proportions in Nham, Nam phak and Miang. Bacillus was predominant in Thua nao, in which significant proportions of Lactic acid bacteria of the family Leuconostocaceae were also found. Groups of lactic acid bacteria found varied among different food samples, but three genera were predominant: Lactococcus, Lactobacillus and Leuconostoc, of which many members are recognised as probiotics. The results showed that these traditional Thai fermented food products are rich sources of beneficial bacteria and can potentially be functional/probiotic foods.


Assuntos
Alimentos Fermentados/microbiologia , Medicina Tradicional do Leste Asiático/métodos , Bactérias/genética , Reatores Biológicos , Fermentação , Microbiologia de Alimentos , Lactobacillales/genética , Lactobacillus/genética , Lactococcus/genética , Leuconostoc/genética , Probióticos , RNA Ribossômico 16S/genética , Tailândia
5.
PLoS One ; 12(2): e0172099, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28192487

RESUMO

The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.


Assuntos
Abelhas/fisiologia , Flores/química , Mel/análise , Compostos Orgânicos Voláteis/análise , Acetaldeído/análogos & derivados , Acetaldeído/análise , Acetaldeído/isolamento & purificação , Monoterpenos Acíclicos , Animais , Abelhas/classificação , Café/química , Cicloexanóis/análise , Cicloexanóis/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Helianthus/química , Litchi/química , Monoterpenos/análise , Monoterpenos/isolamento & purificação , Sapindaceae/química , Microextração em Fase Sólida , Especificidade da Espécie , Tailândia , Compostos de Tritil/análise , Compostos de Tritil/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA