Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Prod Res ; 37(7): 1221-1226, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34661480

RESUMO

Panchvalkal kwath (PK) is a bark formulation of five pharmacologically important plants, i.e., Ficus benghalensis, Ficus racemosa, Ficus religiosa, Thespesia populnea, and Ficus lacor. The Ayurvedic formulation is being used since ancient times to cure diabetes, bacterial infections and heal wounds. The present study aims to identify the metabolite profiles of PK which could explain its properties and its mode of action against specific diseases and disorders. The aqueous extract of Panchvalkal is prepared through a hot maceration process. The extract is subjected to preliminary identification of phytoconstituents and FTIR spectroscopy to recognize functional groups. GC-MS analysis reveals that the extract is enriched with 24-Norursa-3,12-diene (25.16%); Lup-20(29)-en-3-one (16.76%); 2-methyl-3-(4-propan-2-ylphenyl) propanal (7.04%); 2-(hydroxymethyl)-2-nitropropane-1,3-diol (11.21%) and 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one (4.15%). The presence of three new phytocompounds that are 4-(hydroxymethyl)-7-methyl-1,3-dioxepane-5,6-diol; 1-(4-isopropylphenyl)-2-methylpropylacetate and 4,4,6 A,6B,8A,11,11,14B-octamethyl-1,4,4A,5,6,6A,8,8a,910,11,12,12a,12b,13,14,14a,14b-ctadecahydro-3(2H)-picenone are detected in the extract. Metabolite profiles of the extract also constitute isoeugenol, stigmasterol, ergosterol, ocimene, myrcene, squalene, sphingosine, betulin, methyl ferulate and cis-jasmone, which are unraveled by 1 D 1H and 2 D 1H-13C HSQC NMR spectroscopy. This article focuses on the presence of different phytocompounds in PK in order to demonstrate its efficacy as a therapeutic formulation for a variety of diseases.


Assuntos
Ficus , Extratos Vegetais , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Ergosterol , Ficus/química
2.
Environ Sci Pollut Res Int ; 29(53): 79995-80004, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35199267

RESUMO

In this study, a simple, one-pot, and eco-friendly biosynthesis of silver nanoparticles (AgNPs) was accomplished with the use of aqueous leaves extract of Cestrum nocturnum L.(AECN). Different techniques like ultraviolet-visible (UV-Vis) spectrophotometry, Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning area electron diffraction were used to investigate the optical, operational, and physical properties of the green synthesized AECN-AgNPs.The AECN-AgNPs were further used for the detection of Hg2+ by UV-Vis and electrochemical methods. The disintegration of the AECN-AgNPs solution caused the formation of an Ag-Hg amalgam, which caused discoloration of the solution. Sensing performance for a variety of metals such as Na+, K+, Mg2+, Ca2+, Ni2+, Cu 2+, Fe3+, Zn2+, Co2+, Cd2+, Pb2+, As3+, and Mn2+ at 10-mM concentrations was measured in order to determine the selectivity of the sensor towards the Hg2+. For the electrochemical determination of 2 + Hg2+ , AECN-AgNPs were immobilized on a glassy carbon (GC) electrode, and the resulting modified electrode (GC/AECN-AgNPs) was characterized by cyclic voltammetry. This phenomenon is advantageously used for the sensitive determination of trace level Hg2+. GC/AECN-AgNPs demonstrated a linear calibration range of 100 nM to 10 µM and a limit of detection of 21 nM for Hg2+ determination.


Assuntos
Cestrum , Mercúrio , Nanopartículas Metálicas , Prata/química , Nanopartículas Metálicas/química , Verde de Metila , Cádmio , Chumbo , Água/química , Difração de Raios X , Extratos Vegetais/farmacologia , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA