Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Methods ; 15(37): 4905-4917, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37718950

RESUMO

The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.


Assuntos
Exossomos , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Adolescente , Criança , Humanos , Leite Humano/química , Leite Humano/metabolismo , Colostro/química , Colostro/metabolismo , Nascimento Prematuro/metabolismo , Lactação/fisiologia , Exossomos/metabolismo , Proteômica , Espectrometria de Massas em Tandem
2.
Nutrients ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513702

RESUMO

Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.


Assuntos
MicroRNAs , Gravidez , Recém-Nascido , Feminino , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Leite/metabolismo , Colostro/metabolismo , Lactação/genética , Sinapses/metabolismo
3.
Neuroendocrinology ; 104(1): 40-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26862917

RESUMO

Obesity is associated with increased fever and sickness behavior in response to infection. The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in the reaction to immune stimuli. Bacterial infection, or bacterial lipopolysaccharide (LPS), induces the expression of peripheral cytokines that stimulate the hypothalamus and the hippocampus and activate the HPA axis. In this study, we explored whether the hypothalamic and hippocampal responses to infection are altered during the development of diet-induced obesity. Male mice were exposed to a high-fat diet (HFD) or a low-fat diet (LFD) for 15 days. They were then administered a single intraperitoneal injection of bacterial LPS or vehicle and sacrificed 24 h later. LPS increased circulating levels of insulin and leptin, but only in LFD animals. LPS induced a significant decrease in hypothalamic corticotrophin-releasing hormone and glucocorticoid receptor mRNA levels in LFD animals but exerted the opposite effect in HFD-fed mice. LPS increased the hypothalamic expression of molecules involved in the leptin signaling pathway (SOCS3 and STAT3), nuclear factor-κB pathway members, inflammatory mediators (tumor necrosis factor-α and interleukin-6) and glial proliferation markers (Emr1 and CD68) in LFD animals. These effects were dampened in HFD-fed mice. In contrast, the hippocampal responses to LPS were largely insensitive to HFD. These results suggest that HFD feeding reduced the inflammatory response induced by LPS in the hypothalamus but not in the hippocampus.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Obesidade/etiologia , Adiponectina/sangue , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Gorduras na Dieta , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Inflamação/induzido quimicamente , Insulina/sangue , Leptina/sangue , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , RNA Mensageiro , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Psychoneuroendocrinology ; 35(10): 1525-35, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20558007

RESUMO

Stress during pregnancy can impair biological and behavioral responses in the adult offspring and some of these effects are associated with structural changes in specific brain regions. Furthermore, these outcomes can vary according to strain, gender, and type and duration of the maternal stress. Indeed, early stress can induce sexually dimorphic long-term effects on diverse endocrine axes, including subsequent responses to stress. However, whether hypothalamic structural modifications are associated with these endocrine disruptions has not been reported. Thus, we examined the gender differences in the long-term effects of prenatal and adult immobilization stress on the hypothalamic-pituitary-adrenocortical (HPA) axis and the associated changes in hypothalamic structural proteins. Pregnant Wistar rats were subjected to immobilization stress three times daily (45 min each) during the last week of gestation. One half of the offspring were subjected to the same regimen of stress on 10 consecutive days starting at postnatal day (PND) 90. At sacrifice (PND 180), serum corticosterone levels were significantly higher in females compared to males and increased significantly in females subjected to both stresses with no change in males. Prenatal stress increased pituitary ACTH content in males, with no effect in females. Hypothalamic CRH mRNA levels were significantly increased by prenatal stress in females, but decreased in male rats. In females neither stress affected hypothalamic cell death, as determined by cytoplasmic histone-associated DNA fragment levels or proliferation, determined by proliferating cell nuclear antigen levels (PCNA); however, in males there was a significant decrease in cell death in response to prenatal stress and a decrease in PCNA levels with both prenatal and adult stress. In all groups BrdU immunoreactivity colocalized in glial fibrillary acidic protein (GFAP) positive cells, with few BrdU/NeuN labelled cells found. Furthermore, in males the astrocyte marker S100ß increased with prenatal stress and decreased with adult stress, suggesting affectation of astrocytes. Synapsin-1 levels were increased by adult stress in females and by prenatal stress in males, while, PSD95 levels were increased in females and decreased in males by both prenatal and adult stress. In conclusion, hypothalamic structural rearrangement appears to be involved in the long-term endocrine outcomes observed after both chronic prenatal and adult stresses. Furthermore, many of these changes are not only different between males and females, but opposite, which could underlie the gender differences in the long-term sequelae of chronic stress, including subsequent responses to stress.


Assuntos
Sistema Hipotálamo-Hipofisário/patologia , Hipotálamo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Estresse Psicológico/patologia , Glândulas Suprarrenais/patologia , Animais , Western Blotting , Morte Celular/fisiologia , Doença Crônica , Corticosterona/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Masculino , Neuroglia/patologia , Tamanho do Órgão/fisiologia , Sistema Hipófise-Suprarrenal/patologia , Gravidez , RNA/biossíntese , RNA/genética , RNA/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Restrição Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA