Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rejuvenation Res ; 13(5): 527-37, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20818983

RESUMO

Following spinal cord injury (SCI) or peripheral neuropathy, increased levels of the p75(NTR) death receptor initiate the signal transduction cascade leading to cell death. Investigations of compounds that may ameliorate neuronal cell death have largely used rodent models, which are time consuming, expensive, and cumbersome to perform. Previous studies had demonstrated that steroids, particularly dexamethasone and its analog methylprednisolone sodium succinate, exhibit limited neuroprotective effects against neuronal injury. Significantly, many naturally occurring nonsteroidal plant compounds exhibit structural overlap with steroids. In this report, we present an in vitro cellular screen model to practically examine the efficacy of various phytoestrogens in modulating the ibuprofen-induced expression of p75(NTR) and reduced cell survival of CCFSTTG1 and U87MG cells in a rescue (postinjury) or prevention (preinjury) regimen. We show that the phytoestrogen, biochanin A, and, to a lesser extent, genistein are more effective than dexamethasone at reducing p75(NTR) expression and improving the viability of U87MG and CCFSTTG1 before and after p75(NTR) induction. Furthermore, these studies implicate biochanin A's inactivation of p38-MAPK as a possible contributor to reducing p75(NTR) with associated increased cell survival. This new in vitro assay facilitates a more time-efficient screening of compounds to suppress p75(NTR) expression and increase neuronal cell viability prior to their evaluation in animal models of neurological diseases.


Assuntos
Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Genisteína/farmacologia , Ibuprofeno/farmacologia , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Receptores de Fator de Crescimento Neural/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Differentiation ; 73(8): 385-96, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16316409

RESUMO

The expression of the p75 neurotrophin receptor (p75NTR) is diminished in epithelial cells during progression of prostate cancer in vivo and in vitro. Previous studies have demonstrated a role for p75NTR as a tumor suppressor in prostate growth. To better understand the molecular mechanism of p75(NTR) on tumor suppression, we utilized a complementary deoxyribonucleic acid microarray composed of approximately 6,000 human cancer-related genes to determine the gene expression pattern altered by re-introduction of p75NTR into PC-3 prostate tumor cells. Comparison of the transcripts in the neo and p75NTR-transfected cells revealed 52 differentially expressed genes, of which 21 were up-regulated and 31 were down-regulated in the presence of p75NTR. Based on the known biological functions of the p75NTR-regulated genes, we observed that p75NTR modulated the expression of genes that are critically involved in the regulation of differentiation as well as cell adhesion, signal transduction, apoptosis, tumor cell invasion, and metastasis. Several differentially expressed genes identified by microarray were selected for confirmation using quantitative real-time polymerase chain reaction. Immunoblot analysis further confirmed increased cellular retinoic acid-binding protein I (CRABPI) and IGFBP5 protein levels and decreased level of PLAUR protein with increasing p75NTR protein expression. As CRABPI was elevated far more than any other genes, we observed that the retinoids, all-trans retinoic acid and 9-cis retinoic acid, that bind CRABPI, promoted nitroblue tetrazolium-associated functional cell differentiation in p75NTR PC-3 cells, but not in neo control PC-3 cells. Subsequent examination of the retinoic acid receptors (RARs) expression levels demonstrated an absence of RAR-beta in the neo control cells and re-expression in the p75NTR expressing cells, consistent with previous findings where RAR-beta is believed to play a critical role as a tumor suppressor gene that is lost during de-differentiation of prostate epithelial cells. Whereas the RAR-alpha and -gamma protein levels remained unchanged, retinoid X receptor (RXR)-alpha and -beta also exhibited increasing protein levels with re-expression of the p75NTR protein. Moreover, the ability of p75NTR siRNA to knockdown levels of RAR-beta, RXR-alpha, and RXR-beta supports the specificity of the functional involvement of p75NTR in differentiation. Hence, re-expression of the p75NTR appears to partially reverse de-differentiation of prostate cancer cells by up-regulating the expression of CRABPI for localized sequestration of retinoids that are available to newly up-regulated RAR-beta, RXR-alpha, and RXR-beta.


Assuntos
Diferenciação Celular/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores de Fator de Crescimento Neural/fisiologia , Receptores do Ácido Retinoico/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Retinoides/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA