Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metallomics ; 15(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37849243

RESUMO

All bacteria possess homeostastic mechanisms that control the availability of micronutrient metals within the cell. Cross-talks between different metal homeostasis pathways within the same bacterial organism have been reported widely. In addition, there have been previous suggestions that some metal uptake transporters can promote adventitious uptake of the wrong metal. This work describes the cross-talk between Cu and the Zn and Mn homeostasis pathways in Group A Streptococcus (GAS). Using a ∆copA mutant strain that lacks the primary Cu efflux pump and thus traps excess Cu in the cytoplasm, we show that growth in the presence of supplemental Cu promotes downregulation of genes that contribute to Zn or Mn uptake. This effect is not associated with changes in cellular Zn or Mn levels. Co-supplementation of the culture medium with Zn or, to a lesser extent, Mn alleviates key Cu stress phenotypes, namely bacterial growth and secretion of the fermentation end-product lactate. However, neither co-supplemental Zn nor Mn influences cellular Cu levels or Cu availability in Cu-stressed cells. In addition, we provide evidence that the Zn or Mn uptake transporters in GAS do not promote Cu uptake. Together, the results from this study strengthen and extend our previous proposal that mis-regulation of Zn and Mn homeostasis is a key phenotype of Cu stress in GAS.


Assuntos
Cobre , Zinco , Cobre/metabolismo , Zinco/metabolismo , Streptococcus pyogenes , Metais , Homeostase , Fenótipo
2.
mBio ; 11(6)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262259

RESUMO

Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.


Assuntos
Cobre/metabolismo , Glutationa/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Transporte Biológico , Cobre/farmacologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Camundongos , Mutação , Streptococcus pyogenes/efeitos dos fármacos , Estresse Fisiológico , Virulência
3.
Artigo em Inglês | MEDLINE | ID: mdl-29133551

RESUMO

Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce ß-lactamases with carbapenemase activity, such as the metallo-ß-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse ß-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other ß-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 µM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Íons/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Carbapenêmicos/farmacologia , Ertapenem/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana/métodos , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , beta-Lactamases/metabolismo , beta-Lactamas/farmacologia
4.
Antimicrob Agents Chemother ; 59(10): 6444-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239980

RESUMO

There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen.


Assuntos
Antibacterianos/toxicidade , Complexos de Coordenação/toxicidade , Cobre/toxicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Tiossemicarbazonas/toxicidade , Antibacterianos/química , Transporte Biológico , Complexos de Coordenação/química , Cobre/química , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Haemophilus influenzae/metabolismo , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus acidophilus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/crescimento & desenvolvimento , Neisseria gonorrhoeae/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Especificidade da Espécie , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Tiossemicarbazonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA