Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652155

RESUMO

Medicinal plants are integral to traditional medicine systems world-wide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasising the meticulous choice of explants, e.g. embryonic/meristematic tissues; plant growth regulators, e.g. synthetic cytokinins; and use of novel regeneration-enabling methods to deliver morphogenic genes e.g. GRF/GIF chimeras and nanoparticles, which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.

2.
Front Plant Sci ; 14: 1110144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025140

RESUMO

Cannabis sativa is a multi-use and chemically complex plant which is utilized for food, fiber, and medicine. Plants produce a class of psychoactive and medicinally important specialized metabolites referred to as phytocannabinoids (PCs). The phytohormone methyl jasmonate (MeJA) is a naturally occurring methyl ester of jasmonic acid and a product of oxylipin biosynthesis which initiates and regulates the biosynthesis of a broad range of specialized metabolites across a number of diverse plant lineages. While the effects of exogenous MeJA application on PC production has been reported, treatments have been constrained to a narrow molar range and to the targeted analysis of a small number of compounds. Using high-resolution mass spectrometry with data-dependent acquisition, we examined the global metabolomic effects of MeJA in C. sativa to explore oxylipin-mediated regulation of PC biosynthesis and accumulation. A dose-response relationship was observed, with an almost two-fold increase in PC content found in inflorescences of female clones treated with 15 mM MeJA compared to the control group. Comparison of the inflorescence metabolome across MeJA treatments coupled with targeted transcript analysis was used to elucidate key regulatory components contributing to PC production and metabolism more broadly. Revealing these biological signatures improves our understanding of the role of the oxylipin pathway in C. sativa and provides putative molecular targets for the metabolic engineering and optimization of chemical phenotype for medicinal and industrial end-uses.

3.
Plant Physiol ; 173(1): 183-205, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837085

RESUMO

Pollen exine is essential for protection from the environment of the male gametes of seed-producing plants, but its assembly and composition remain poorly understood. We previously characterized Arabidopsis (Arabidopsis thaliana) mutants with abnormal pollen exine structure and morphology that we named kaonashi (kns). Here we describe the identification of the causal gene of kns4 that was found to be a member of the CAZy glycosyltransferase 31 gene family, identical to UNEVEN PATTERN OF EXINE1, and the biochemical characterization of the encoded protein. The characteristic exine phenotype in the kns4 mutant is related to an abnormality of the primexine matrix laid on the surface of developing microspores. Using light microscopy with a combination of type II arabinogalactan (AG) antibodies and staining with the arabinogalactan-protein (AGP)-specific ß-Glc Yariv reagent, we show that the levels of AGPs in the kns4 microspore primexine are considerably diminished, and their location differs from that of wild type, as does the distribution of pectin labeling. Furthermore, kns4 mutants exhibit reduced fertility as indicated by shorter fruit lengths and lower seed set compared to the wild type, confirming that KNS4 is critical for pollen viability and development. KNS4 was heterologously expressed in Nicotiana benthamiana, and was shown to possess ß-(1,3)-galactosyltransferase activity responsible for the synthesis of AG glycans that are present on both AGPs and/or the pectic polysaccharide rhamnogalacturonan I. These data demonstrate that defects in AGP/pectic glycans, caused by disruption of KNS4 function, impact pollen development and viability in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactanos/metabolismo , Galactosiltransferases/metabolismo , Pólen/enzimologia , Arabidopsis/genética , Arabidopsis/ultraestrutura , Biopolímeros/metabolismo , Carotenoides/metabolismo , Epitopos/metabolismo , Fertilidade , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Biológicos , Mutação/genética , Pectinas/metabolismo , Fenótipo , Pólen/ultraestrutura
4.
Plant Physiol ; 172(4): 2204-2218, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27756823

RESUMO

The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Calpaína/metabolismo , Parede Celular/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Calpaína/genética , Parede Celular/ultraestrutura , Epitopos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cinética , Modelos Biológicos , Pectinas/metabolismo , Fenótipo , Desenvolvimento Vegetal/genética , Epiderme Vegetal/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
5.
Proc Natl Acad Sci U S A ; 104(39): 15566-71, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17878302

RESUMO

In higher plants, cellulose is synthesized at the plasma membrane by the cellulose synthase (CESA) complex. The catalytic core of the complex is believed to be composed of three types of CESA subunits. Indirect evidence suggests that the complex associated with primary wall cellulose deposition consists of CESA1, -3, and -6 in Arabidopsis thaliana. However, phenotypes associated with mutations in two of these genes, CESA1 and -6, suggest unequal contribution by the different CESAs to overall enzymatic activity of the complex. We present evidence that the primary complex requires three unique types of components, CESA1-, CESA3-, and CESA6-related, for activity. Removal of any of these components results in gametophytic lethality due to pollen defects, demonstrating that primary-wall cellulose synthesis is necessary for pollen development. We also show that the CESA6-related CESAs are partially functionally redundant.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/química , Modelos Genéticos , Catálise , Celulose/química , Técnicas Genéticas , Genótipo , Luz , Microscopia Eletrônica , Mutação , Fenótipo , Pólen/metabolismo , Isoformas de Proteínas
6.
Plant J ; 52(1): 147-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17666022

RESUMO

The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.


Assuntos
Glucosiltransferases/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Pólen , Proteoma , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Glucanos/biossíntese , Dados de Sequência Molecular , Peso Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Nicotiana/enzimologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA