Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Curr Protoc ; 4(2): e994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372479

RESUMO

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Assuntos
Arritmias Cardíacas , Técnicas Eletrofisiológicas Cardíacas , Camundongos , Animais , Arritmias Cardíacas/terapia , Ventrículos do Coração , Átrios do Coração , Estimulação Elétrica
2.
J Physiol ; 601(13): 2711-2731, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36752166

RESUMO

Cardiac electrophysiology is regulated by continuous trafficking and internalization of ion channels occurring over minutes to hours. Kv 11.1 (also known as hERG) underlies the rapidly activating delayed-rectifier K+ current (IKr ), which plays a major role in cardiac ventricular repolarization. Experimental characterization of the distinct temporal effects of genetic and acquired modulators on channel trafficking and gating is challenging. Computer models are instrumental in elucidating these effects, but no currently available model incorporates ion-channel trafficking. Here, we present a novel computational model that reproduces the experimentally observed production, forward trafficking, internalization, recycling and degradation of Kv 11.1 channels, as well as their modulation by temperature, pentamidine, dofetilide and extracellular K+ . The acute effects of these modulators on channel gating were also incorporated and integrated with the trafficking model in the O'Hara-Rudy human ventricular cardiomyocyte model. Supraphysiological dofetilide concentrations substantially increased Kv 11.1 membrane levels while also producing a significant channel block. However, clinically relevant concentrations did not affect trafficking. Similarly, severe hypokalaemia reduced Kv 11.1 membrane levels based on long-term culture data, but had limited effect based on short-term data. By contrast, clinically relevant elevations in temperature acutely increased IKr due to faster kinetics, while after 24 h, IKr was decreased due to reduced Kv 11.1 membrane levels. The opposite was true for lower temperatures. Taken together, our model reveals a complex temporal regulation of cardiac electrophysiology by temperature, hypokalaemia, and dofetilide through competing effects on channel gating and trafficking, and provides a framework for future studies assessing the role of impaired trafficking in cardiac arrhythmias. KEY POINTS: Kv 11.1 channels underlying the rapidly activating delayed-rectifier K+ current are important for ventricular repolarization and are continuously shuttled from the cytoplasm to the plasma membrane and back over minutes to hours. Kv 11.1 gating and trafficking are modulated by temperature, drugs and extracellular K+ concentration but experimental characterization of their combined effects is challenging. Computer models may facilitate these analyses, but no currently available model incorporates ion-channel trafficking. We introduce a new two-state ion-channel trafficking model able to reproduce a wide range of experimental data, along with the effects of modulators of Kv 11.1 channel functioning and trafficking. The model reveals complex dynamic regulation of ventricular repolarization by temperature, extracellular K+ concentration and dofetilide through opposing acute (millisecond) effects on Kv 11.1 gating and long-term (hours) modulation of Kv 11.1 trafficking. This in silico trafficking framework provides a tool to investigate the roles of acute and long-term processes on arrhythmia promotion and maintenance.


Assuntos
Antiarrítmicos , Hipopotassemia , Humanos , Antiarrítmicos/farmacologia , Hipopotassemia/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Canais Iônicos/metabolismo , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo
4.
Europace ; 23(11): 1795-1814, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34313298

RESUMO

Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.


Assuntos
Fibrilação Atrial , Técnicas Eletrofisiológicas Cardíacas , Animais , Eletrofisiologia Cardíaca , Fenômenos Eletrofisiológicos , Humanos , Modelos Teóricos
5.
Int J Cardiol Heart Vasc ; 21: 11-15, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30225340

RESUMO

Rhythm and rate strategies are considered equivalent for the management of atrial fibrillation (AF). Moreover, both strategies are intended for improving symptoms and quality of life. Despite the clinical availability of several antiarrhythmic drugs (AAD) the alternatives for the patient with comorbidities are significantly fewer because of the concern regarding many adverse effects, including proarrhythmias. The impetuous development of AF ablation gave rise to a false impression that AAD are a second line therapy. All these statements reflect, in fact, the weakness of the classical paradigm and classification regarding AAD and the gap between the current knowledge of AF mechanism and determinants and the "classical" AAD non-discriminatory action. A new paradigm in development of effective and safe AAD is based on modern knowledge of vulnerable parameters involved in the genesis and perpetuation of AF. New AAD will target specific triggers of AF and ion currents which are expressed preferentially in fibrillatory atrium. Such targets will include repolarizing currents and channels, as ultrarapid potassium current, two pore potassium current, the acetylcholine-gated potassium current, small-conductance calcium-dependent potassium channels, but, also, molecular targets involved in intracellular calcium kinetics, as Ca2+-calmodulin-dependent protein kinase, ryanodine receptors and non-coding miRNA. New mechanistic discoveries link AF to inflammation and modern anti-cytokine drugs. There is still a long way to win between basic research and clinical practice, but, without any doubt, antiarrhythmic drug therapy will remain and develop as a cornerstone therapy for AF not in conflict, but complementary and alternative to interventional therapy.

6.
Europace ; 20(3): 395-407, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300976

RESUMO

There are major challenges ahead for clinicians treating patients with atrial fibrillation (AF). The population with AF is expected to expand considerably and yet, apart from anticoagulation, therapies used in AF have not been shown to consistently impact on mortality or reduce adverse cardiovascular events. New approaches to AF management, including the use of novel technologies and structured, integrated care, have the potential to enhance clinical phenotyping or result in better treatment selection and stratified therapy. Here, we report the outcomes of the 6th Consensus Conference of the Atrial Fibrillation Network (AFNET) and the European Heart Rhythm Association (EHRA), held at the European Society of Cardiology Heart House in Sophia Antipolis, France, 17-19 January 2017. Sixty-two global specialists in AF and 13 industry partners met to develop innovative solutions based on new approaches to screening and diagnosis, enhancing integration of AF care, developing clinical pathways for treating complex patients, improving stroke prevention strategies, and better patient selection for heart rate and rhythm control. Ultimately, these approaches can lead to better outcomes for patients with AF.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/terapia , Cardiologia/normas , Prestação Integrada de Cuidados de Saúde/normas , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/fisiopatologia , Consenso , Difusão de Inovações , Humanos , Valor Preditivo dos Testes , Resultado do Tratamento
7.
Circulation ; 129(4): 430-40, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24190961

RESUMO

BACKGROUND: Recent evidence points to functional Ca²âº-dependent K⁺ (SK) channels in the heart that may govern atrial fibrillation (AF) risk, but the underlying mechanisms are unclear. This study addressed the role of SK channels in atrial repolarization and AF persistence in a canine AF model. METHODS AND RESULTS: Electrophysiological variables were assessed in dogs subjected to atrial remodeling by 7-day atrial tachypacing (AT-P), as well as controls. Ionic currents and single-channel properties were measured in isolated canine atrial cardiomyocytes by patch clamp. NS8593, a putative selective SK blocker, suppressed SK current with an IC50 of ≈5 µmol/L, without affecting Na⁺, Ca²âº, or other K⁺ currents. Whole-cell SK current sensitive to NS8593 was significantly larger in pulmonary vein (PV) versus left atrial (LA) cells, without a difference in SK single-channel open probability (P(o)), whereas AT-P enhanced both whole-cell SK currents and single-channel P(o). SK-current block increased action potential duration in both PV and LA cells after AT-P; but only in PV cells in absence of AT-P. SK2 expression was more abundant at both mRNA and protein levels for PV versus LA in control dogs, in both control and AT-P; AT-P upregulated only SK1 at the protein level. Intravenous administration of NS8593 (5 mg/kg) significantly prolonged atrial refractoriness and reduced AF duration without affecting the Wenckebach cycle length, left ventricular refractoriness, or blood pressure. CONCLUSIONS: SK currents play a role in canine atrial repolarization, are larger in PVs than LA, are enhanced by atrial-tachycardia remodeling, and appear to participate in promoting AF maintenance. These results are relevant to the potential mechanisms underlying the association between SK single-nucleotide polymorphisms and AF and suggest SK blockers as potentially interesting anti-AF drugs.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacologia , Animais , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Veias Pulmonares/efeitos dos fármacos , Veias Pulmonares/patologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos
8.
Circ Arrhythm Electrophysiol ; 6(4): 799-808, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23884198

RESUMO

BACKGROUND: When complete atrioventricular block (AVB) occurs, infranodal escape rhythms are essential to prevent bradycardic death. The role of T-type Ca(2+) channels in pacemaking outside the sinus node is unknown. We investigated the role of T-type Ca(2+) channels in escape rhythms and bradycardia-related ventricular tachyarrhythmias after AVB in mice. METHODS AND RESULTS: Adult male mice lacking the main T-type Ca(2+) channel subunit Cav3.1 (Cav3.1(-/-)) and wild-type (WT) controls implanted with ECG telemetry devices underwent radiofrequency atrioventricular node ablation to produce AVB. Before ablation, Cav3.1(-/-) mice showed sinus bradycardia (mean±SEM; RR intervals, 148±3 versus 128±2 ms WT; P<0.001). Immediately after AVB, Cav3.1(-/-) mice had slower escape rhythms (RR intervals, 650±75 versus 402±26 ms in WT; P<0.01) but a preserved heart-rate response to isoproterenol. Over the next 24 hours, mortality was markedly greater in Cav3.1(-/-) mice (19/31; 61%) versus WT (8/26; 31%; P<0.05), and Torsades de Pointes occurred more frequently (73% Cav3.1(-/-) versus 35% WT; P<0.05). Escape rhythms improved in both groups during the next 4 weeks but remained significantly slower in Cav3.1(-/-). At 4 weeks after AVB, ventricular tachycardia was more frequent in Cav3.1(-/-) than in WT mice (746±116 versus 214±78 episodes/24 hours; P<0.01). Ventricular function remodeling was similar in Cav3.1(-/-) and WT, except for smaller post-AVB fractional-shortening increase in Cav3.1(-/-). Expression changes were seen post-AVB for a variety of genes; these tended to be greater in Cav3.1(-/-) mice, and overexpression of fetal and profibrotic genes occurred only in Cav3.1(-/-). CONCLUSIONS: This study suggests that T-type Ca(2+) channels play an important role in infranodal escape automaticity. Loss of T-type Ca(2+) channels worsens bradycardia-related mortality, increases bradycardia-associated adverse remodeling, and enhances the risk of malignant ventricular tachyarrhythmias complicating AVB.


Assuntos
Bloqueio Atrioventricular/metabolismo , Bradicardia/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Periodicidade , Torsades de Pointes/metabolismo , Potenciais de Ação , Animais , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Bradicardia/diagnóstico , Bradicardia/genética , Bradicardia/fisiopatologia , Bradicardia/prevenção & controle , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Técnicas Eletrofisiológicas Cardíacas , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Telemetria , Fatores de Tempo , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Torsades de Pointes/fisiopatologia , Torsades de Pointes/prevenção & controle , Remodelação Ventricular
9.
Circulation ; 123(2): 137-46, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21200008

RESUMO

BACKGROUND: Coronary artery disease predisposes to atrial fibrillation (AF), but the effects of chronic atrial ischemia/infarction on AF-related substrates are unknown. METHODS AND RESULTS: Regional right atrial myocardial infarction (MI) was created in 40 dogs by ligating an artery that supplies the right atrial free wall and not the ventricles; 35 sham dogs with the same artery isolated but not ligated were controls. Dogs were observed 8 days after MI and subjected to open-chest study, in vitro optical mapping, and/or cell isolation for patch-clamp and Ca(2+) imaging on day 8. Holter ECGs showed more spontaneous atrial ectopy in MI dogs (eg, 662±281 on day 7 versus 34±25 ectopic complexes per day at baseline; 52±21 versus 1±1 atrial tachycardia episodes per day). Triggered activity was increased in MI border zone cells, which had faster decay of caffeine-evoked Ca(2+) transients and enhanced (by ≈73%) Na(+)-Ca(2+) exchange current. Spontaneous Ca(2+) sparks (confocal microscopy) occurred under ß-adrenergic stimulation in more MI dog cells (66±9%) than in control cells (29±4%; P<0.01). Burst pacing induced long-lasting AF in MI dogs (1146±259 versus 30±14 seconds in shams). Increased border zone conduction heterogeneity was confirmed by both bipolar electrode mapping in vivo and optical mapping. Optical mapping demonstrated stable border zone reentry in all 9 MI preparations but in none of 6 shams. Border zone tissue showed increased fibrous tissue content. CONCLUSIONS: Chronic atrial ischemia/infarction creates substrates for both spontaneous ectopy (Ca(2+)-release events, increased Na(+)-Ca(2+) exchange current) and sustained reentry (conduction abnormalities that anchor reentry). Thus, chronic atrial infarction in dogs promotes both AF triggers and the substrate for AF maintenance. These results provide novel insights into potential AF mechanisms in patients with coronary artery disease.


Assuntos
Fibrilação Atrial/fisiopatologia , Estenose Coronária/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Animais , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Doença Crônica , Estenose Coronária/metabolismo , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo
10.
Br J Pharmacol ; 159(8): 1581-3, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20388187

RESUMO

Recent research provided important insights into the development of atrial fibrillation (AF)-maintaining substrate and suggested targeting of the underlying molecular mechanisms, 'upstream' of the electrical aspects of AF, as a novel strategy for AF treatment ('upstream' therapy). Upstream therapies for AF include drugs targeting the renin-angiotensin II-aldosterone system (angiotensin converting enzyme inhibitors and AT(1) receptor antagonists and aldosterone antagonists), statins, steroids and omega-3 fatty acids (fish oil). Aldosterone causes volume retention, cardiac hypertrophy and fibrosis, and systemic inflammation and coagulation that promote AF development and its complications and blockade of aldosterone receptors with spironolactone or eplerenone suppresses inducible AF. Although the clinical impact of spironolactone treatment requires validation in randomized clinical trials in AF patients, further understanding of the molecular mechanisms by which aldosterone causes atrial remodelling is likely to lead to development of novel therapeutic approaches to AF.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Espironolactona/análogos & derivados , Espironolactona/uso terapêutico , Eplerenona , Humanos
11.
Lancet ; 375(9721): 1212-23, 2010 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-20334907

RESUMO

Inadequacies in current therapies for atrial fibrillation have made new drug development crucial. Conventional antiarrhythmic drugs increase the risk of ventricular proarrhythmia. In drug development, the focus has been on favourable multichannel-blocking profiles, atrial-specific ion-channels, and novel non-channel targets (upstream therapy). Molecular modification of the highly effective multichannel blocker, amiodarone, to improve safety and tolerability has produced promising analogues such as dronedarone, although this drug seems less effective than does amiodarone. Vernakalant, an atrial-selective drug with reduced proarrhythmic risk, might be useful for cardioversion in atrial fibrillation. Ranolazine, another atrial-selective agent initially developed as an antianginal, has efficacy for atrial fibrillation and is being tested in prospective clinical trials. So-called upstream therapy with angiotensin-converting enzyme and angiotensin-receptor inhibitors, statins, or omega-3 fatty acids and fish oil that target atrial remodelling could be effective, but need further clinical validation. We focus on the basic and clinical pharmacology of newly emerging antiarrhythmic drugs and non-traditional approaches such as upstream therapy for atrial fibrillation.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Acetanilidas/uso terapêutico , Amiodarona/análogos & derivados , Amiodarona/uso terapêutico , Anisóis/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Fibrilação Atrial/fisiopatologia , Dronedarona , Humanos , Piperazinas/uso terapêutico , Pirrolidinas/uso terapêutico , Ranolazina , Sistema Renina-Angiotensina/efeitos dos fármacos
12.
J Mol Cell Cardiol ; 46(3): 385-94, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19100271

RESUMO

Atrial dilatation is an independent risk factor for thromboembolism in patients with and without atrial fibrillation (AF). In many patients, atrial dilatation goes along with depressed contractile function of the dilated atria. While some mechanisms causing atrial contractile dysfunction in fibrillating atria have been addressed previously, the cellular and molecular mechanisms of atrial contractile remodeling in dilated atria are unknown. This study characterized in vivo atrial contractile function in a goat model of atrial dilatation and compared it to a goat model of AF. Differences in the underlying mechanisms were elucidated by studying contractile function, electrophysiology and sarcoplasmic reticulum (SR) Ca2+ load in atrial muscle bundles and by analyzing expression and phosphorylation levels of key Ca2+-handling proteins, myofilaments and the expression and activity of their upstream regulators. In 7 chronically instrumented, awake goats atrial contractile dysfunction was monitored during 3 weeks of progressive atrial dilatation after AV-node ablation (AV block goats (AVB)). In open chest experiments atrial work index (AWI) and refractoriness were measured (10 goats with AVB, 5 goats with ten days of AF induced by repetitive atrial burst pacing (AF), 10 controls). Isometric force of contraction (FC), transmembrane action potentials (APs) and rapid cooling contractures (RCC, a measure of SR Ca2+ load) were studied in right atrial muscle bundles. Total and phosphorylated Ca2+-handling and myofilament protein levels were quantified by Western blot. In AVB goats, atrial size increased by 18% (from 26.6+/-4.4 to 31.6+/-5.5 mm, n=7 p<0.01) while atrial fractional shortening (AFS) decreased (from 18.4+/-1.7 to 12.8+/-4.0% at 400 ms, n=7, p<0.01). In open chest experiments, AWI was reduced in AVB and in AF goats compared to controls (at 400 ms: 8.4+/-0.9, n=7, and 3.2+/-1.8, n=5, vs 18.9+/-5.3 mmxmmHg, n=7, respectively, p<0.05 vs control). FC of isolated right atrial muscle bundles was reduced in AVB (n=8) and in AF (n=5) goats compared to controls (n=9) (at 2 Hz: 2.3+/-0.5 and 0.7+/-0.2 vs 5.5+/-1.0 mN/mm2, respectively, p<0.05). APs were shorter in AF, but unchanged in AVB goats. RCCs were reduced in AVB and AF versus control (AVB, 3.4+/-0.5 and AF, 4.1+/-1.4 vs 12.2+/-3.2 mN/mm2, p<0.05). Protein levels of protein kinase A (PKA) phosphorylated phospholamban (PLB) were reduced in AVB (n=8) and AF (n=8) vs control (n=7) by 37.9+/-12.4% and 29.7+/-10.1%, respectively (p<0.01), whereas calmodulin-dependent protein kinase II (CaMKII) phosphorylated ryanodine channels (RyR2) were increased by 166+/-55% in AVB (n=8) and by 146+/-56% in AF (n=8) goats (p<0.01). PKA-phosphorylated myosin-binding protein-C and troponin-I were reduced exclusively in AVB goat atria (by 75+/-10% and 55+/-15%, respectively, n=8, p<0.05). Atrial dilatation developing during slow ventricular rhythm after complete AV block as well as AF-induced remodeling are associated with atrial contractile dysfunction. Both AVB and AF goat atria show decreased SR Ca2+ load, likely caused by PLB dephosphorylation and RYR2 hyperphosphorylation. While shorter APs further compromise contractility in AF goat atria, reduced myofilament phosphorylation may impair contractility in AVB goat atria. Thus, atrial hypocontractility appears to have distinct molecular contributors in different types of atrial remodeling.


Assuntos
Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Nó Atrioventricular/metabolismo , Nó Atrioventricular/fisiopatologia , Proteínas de Ligação ao Cálcio/biossíntese , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Potenciais de Ação , Animais , Fibrilação Atrial/complicações , Dilatação Patológica/complicações , Dilatação Patológica/metabolismo , Dilatação Patológica/fisiopatologia , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Feminino , Cabras , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Contração Isométrica , Potenciais da Membrana , Contração Miocárdica , Fosforilação , Fatores de Risco , Retículo Sarcoplasmático/metabolismo , Tromboembolia/etiologia , Tromboembolia/metabolismo , Tromboembolia/fisiopatologia
13.
J Interv Card Electrophysiol ; 22(2): 107-10, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18330686

RESUMO

Atrial fibrillation is the most frequent cardiac arrhythmia in clinical practice. Although much has been learned, the underlying mechanisms are incompletely understood. Clinically used antiarrhythmic drugs are limited in their efficacy to terminate atrial fibrillation or to maintain sinus rhythm and were associated with substantial toxicity including life-threatening ventricular arrhythmias. Novel therapeutic approaches suggest targeting of atrium-selective ion channels and pathology-specific alterations in atrial repolarisation and arrhythmogenesis as promising drug targets for patients with atrial fibrillation. This article focuses on novel aspects of altered atrial repolarisation and discusses atrium-selective (I(Kur), I(K,ACh)) and pathology-specific (I(K,ACh)) ion channels as potential targets for safe and effective treatment of atrial fibrillation.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Técnicas Eletrofisiológicas Cardíacas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA