Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837209

RESUMO

Recently, the development of materials based on natural polymers have been observed. This is the result of increasing environmental degradation, as well as increased awareness and consumer expectations. Many industries, especially the packaging industry, face challenges resulting from legal regulations. Chitin is the most common biopolymer right after cellulose and is used to produce chitosan. Due to the properties of chitosan, such as non-toxicity, biocompatibility, as well as antimicrobial properties, chitosan-based materials are used in many industries. Many studies have been conducted to determine the suitability of chitosan materials as food packaging, and their advantages and limitations have been identified. Thanks to the possibility of modifying the chitosan matrix by using natural additives, it is possible to strengthen the antioxidant and antimicrobial activity of chitosan films, which means that, in the near future, chitosan-based materials will be a more environmentally friendly alternative to the plastic packaging used so far. The article presents literature data on the most commonly used natural additives, such as essential oils, plant extracts, or polysaccharides, and their effects on antimicrobial, antioxidant, mechanical, barrier, and optical properties. The application of chitosan as a natural biopolymer in food packaging extends the shelf-life of various food products while simultaneously reducing the use of synthetic plastics, which in turn will have a positive impact on the natural environment. However, further research on chitosan and its combinations with various materials is still needed to extent the application of chitosan in food packaging and bring its application to industrial levels.

2.
Biomed Microdevices ; 23(1): 14, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683457

RESUMO

Metal combinations have been attracting the attention of scientists for some time. They usually exhibit new characteristics that are different from the ones possessed by their components. In this work, Au/ZnO/Ag nanoparticles were synthesized biologically using Glechoma hederacea L. extract. The synthesized Au/ZnO/Ag nanoparticles were characterized by UV-Vis, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Atomic Force Microscopy (AFM). The microscopic methods confirmed the presence of spherical nanoparticles of 50-70 nm. The influence of biologically synthesized Au/ZnO/Ag nanoparticles on the vitality of human cells was evaluated in vitro with the use of established human Acute T Cell Leukemia cell line, Jurkat (ATCC® TIB-152™), as well as mononuclear cells isolated from peripheral blood (PBMC) of voluntary donors. Cell survival and the half-maximal inhibitory concentration index (IC50) were analyzed by the MTT test. The studies showed that the total loss of cell viability occurred at the Au/ZnO/Ag nanoparticle concentration range of 10 µmol-50 µmol. The use of Au/ZnO/Ag nanoparticles at the concentration of 100 µmol eliminated almost all living cells from the culture in 24h. The above observation confirms the result obtained during the MTT test.


Assuntos
Lamiaceae , Leucemia , Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos , Humanos , Leucócitos Mononucleares , Nanopartículas Metálicas/toxicidade , Extratos Vegetais , Prata , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Technol ; 42(24): 3747-3755, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32149570

RESUMO

The unique properties of nanoparticles create broad opportunities as regards their application in almost all disciplines of science and technology. There are many reports about the negative influence of nanoproducts on the environment and humans. Therefore, it is of vital importance to explore the impact of metal nanoparticles on plants. This is why this work is concerned with the phytotoxic activity of ZnO nanoparticles synthesized biologically from Betonica officinalis extract against the seed of Lepidium sativum, Linum flavum, Zea mays and Salvia hispanica-Chia. The obtained ZnO nanoparticles were characterized by UV-Vis, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Atomic Force Microscopy (AFM). Those methods made it possible to assess the structure and size of the obtained ZnO nanoparticles, which was 5 nm. The obtained ZnO nanoparticles exhibited significant toxic properties throughout the range of the tested concentrations. ZnO nanoparticles were the most toxic to Lepidium sativum, for which the IC50 value was 0.0000112 [mg/ml]. The solution of Zn(NO3)2 was toxic as well, as it inhibited the growth of the tested sample throughout the range of the tested concentrations.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Stachys , Óxido de Zinco , Antibacterianos , Humanos , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/toxicidade
4.
Biomed Microdevices ; 22(4): 72, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-33037930

RESUMO

The main objective of this work was to assess the cytotoxic activity of Au/Pt/ZnO nanoparticles synthesized using Arctium lappa extract against leukemia. The Au/Pt/ZnO nanoparticles obtained as a result of biological synthesis were characterized by UV-Vis, Scanning (SEM) and Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM). The applied methods showed that the size of nanoparticles ranged from 10 to 40 nm. This work also assessed the cytotoxicity of Au/Pt/ZnO nanoparticles by means of MTT assay, and analyzed apoptosis as well as the influence of the cultivation time and concentration of Au/Pt/ZnO nanoparticles on the percentage of dead cells. The studies showed that the percentage of dead leukemia cells increased with the cultivation time and concentration of Au/Pt/ZnO nanoparticles. There was observed an increase in the percentage of cells in the G2/M phase, which suggests the stoppage of G2/M leading to cell death. The cytotoxicity of Au/Pt/ZnO nanoparticles determined by means of the MTT test indicated that the viability of leukemia cells practically disappeared when the concentration of the tested nanoparticles was 10 mol.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Arctium/química , Leucemia/patologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Ouro/química , Humanos , Platina/química , Óxido de Zinco/química
5.
Biomed Microdevices ; 21(3): 75, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346766

RESUMO

Due to the search for new methods for synthesizing nanomaterials, this work proposes the biological synthesis of platinum nanoparticles using Ononidis radix extract. The synthesized platinum nanoparticles were characterized by UV-Vis, Scanning Electron Microscopy (SEM) with EDS profile, Fourier transform infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The examination conducted by means of Transmission Electron Microscopy showed the presence of spherical and hexagonal platinum nanoparticles. Atomic Force Microscopy indicated the presence of locally agglomerated nanoparticles whose size was about 4 nm. The study also examined the influence of platinum nanoparticles on human non-small cell lung carcinoma cells A549. It was found that the mortality of cells cultured together with platinum nanoparticles increased, and the proliferative activity of A549 cells decreased gradually over time in proportion to the increasing concentration of the test substance. Graphical abstract.


Assuntos
Fabaceae/química , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Extratos Vegetais/metabolismo , Platina/metabolismo , Platina/farmacologia , Células A549 , Ciclo Celular/efeitos dos fármacos , Humanos , Platina/química
6.
Biomed Microdevices ; 20(1): 5, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29177803

RESUMO

The basic goal of this study was to synthesize zinc oxide nanoparticles using the Chelidonium majus extract and asses their cytotoxic and antimicrobial properties. The synthesized ZnO NPs were characterized by UV-Vis, Scanning Electron Microscopy (SEM) with EDS profile, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The aforementioned methods confirmed that the size of synthesized ZnO nanoparticles was at the range of 10 nm. The antimicrobial activity of ZnO nanoparticles synthesized using the Ch. majus extract was tested against standard strains of bacteria (Staphylococcus aureus NCTC 4163, Pseudomonas aeruginosa NCTC 6749, Escherichia coli ATCC 25922), yeast (Candida albicans ATCC 10231), filamentous fungi (molds: Aspergillus niger ATCC 16404, dermatophytes: Trichophyton rubrum ATCC 28188), clinical strains of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and yeast (Candida albicans). The study showed that zinc oxide nanoparticles were excellent antimicrobial agents. What is more, biologically synthesized ZnO nanoparticles demonstrate high efficiency in treatment of human non-small cell lung cancer A549.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Chelidonium/química , Nanopartículas Metálicas/química , Óxido de Zinco/farmacologia , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/síntese química
7.
Indian J Microbiol ; 55(2): 168-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805903

RESUMO

Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA