Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 246-253, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015512

RESUMO

The role of oxidative stress in disease pathogenesis has been extensively investigated. Researchers have gathered sufficient evidence related to oxidative stress-mediated intratesticular damage. The aim of this was study to evaluate the effects of Cornus Mas (CM) extract on intratesticular changes in rats exposed to nicotine. Thirty Wistar albino rats were divided into four groups. The groups and the administrated agents for 35 days were as follows; Control group (n=6): 0.9% saline, intraperitoneally; Nicotine group (n=7): 4 mg/kg nicotine, subcutaneous; CM group (n=7): 1000 mg/kg CM extract in 0.5 ml saline, via gavage; Nicotine + CM Group (n=8): 4 mg/kg Nicotine, subcutaneous + 1000 mg/kg CM extract via gavage. One rat each from the groups Nicotine and CM died.  In spermatogenetic and histopathological examination, significant positive changes were detected in nicotine + CM group regarding seminal parameters, apoptotic cells, Factor VIII and Johnsen score as compared to nicotine group. Oxidative stress markers were higher in nicotine group as compared to the control group. OSI and MDA levels were found to be reduced in nicotine + CM group than nicotine group. Nicotine induced a significant increase in TNF-α and IL-6 levels compared to the control group; however, CM effectively counteracted this increase. We have shown that nicotine increases testicular damage, causes apoptosis of testicular cells and adversely affects spermatogenesis by increasing inflammation. We concluded that CM extract exerted beneficial effects on spermatogenesis and minimized testicular parenchymal damage, apoptosis and angiogenesis. Rapidly increasing understanding of the complexity of oxidative stress in intratesticular is the key to unlocking the potential of ROS-targeting therapies.


Assuntos
Cornus , Masculino , Ratos , Animais , Ratos Wistar , Nicotina/farmacologia , Estresse Oxidativo , Solução Salina , Extratos Vegetais/farmacologia
2.
Metab Brain Dis ; 38(2): 531-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36454503

RESUMO

Alterations in the apoptosis pathway have been linked to changes in serotonin levels seen in autistic patients. Cc2d1a is a repressor of the HTR1A gene involved in the serotonin pathway. The hippocampus and hypothalamus of Cc2d1a ± mice were analyzed for the expression of apoptosis markers (caspase 3, 8 and 9). Gender differences were observed in the expression levels of the three caspases consistent with some altered activity in the open-field assay. The number of apoptotic cells was significantly increased. We concluded that apoptotic pathways are only partially affected in the pathogenesis of the Cc2d1a heterozygous mouse model. A) Apoptosis is suppressed because the cell does not receive a death signal, or the receptor cannot activate the caspase 8 pathway despite the death signal. B) Since Caspase 8 and Caspase 3 expression is downregulated in our mouse model, the mechanism of apoptosis is not activated.


Assuntos
Serotonina , Transdução de Sinais , Animais , Camundongos , Apoptose , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipotálamo/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia
3.
Front Neurol ; 12: 609236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643194

RESUMO

Uncontrolled repetitive generalized tonic-clonic seizures (GTCS) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). GTCS can be observed in models such as Pentylenetetrazole kindling (PTZ-K) or pilocarpine-induced Status Epilepticus (SE-P), which share similar alterations in cardiac function, with a high risk of SUDEP. Terminal cardiac arrhythmia in SUDEP can develop as a result of a high rate of hypoxic stress-induced by convulsions with excessive sympathetic overstimulation that triggers a neurocardiogenic injury, recently defined as "Epileptic Heart" and characterized by heart rhythm disturbances, such as bradycardia and lengthening of the QT interval. Recently, an iron overload-dependent form of non-apoptotic cell death called ferroptosis was described at the brain level in both the PTZ-K and SE-P experimental models. However, seizure-related cardiac ferroptosis has not yet been reported. Iron overload cardiomyopathy (IOC) results from the accumulation of iron in the myocardium, with high production of reactive oxygen species (ROS), lipid peroxidation, and accumulation of hemosiderin as the final biomarker related to cardiomyocyte ferroptosis. Iron overload cardiomyopathy is the leading cause of death in patients with iron overload secondary to chronic blood transfusion therapy; it is also described in hereditary hemochromatosis. GTCS, through repeated hypoxic stress, can increase ROS production in the heart and cause cardiomyocyte ferroptosis. We hypothesized that iron accumulation in the "Epileptic Heart" could be associated with a terminal cardiac arrhythmia described in the IOC and the development of state-potentially in the development of SUDEP. Using the aforementioned PTZ-K and SE-P experimental models, after SUDEP-related repetitive GTCS, we observed an increase in the cardiac expression of hypoxic inducible factor 1α, indicating hypoxic-ischemic damage, and both necrotic cells and hemorrhagic areas were related to the possible hemosiderin production in the PTZ-K model. Furthermore, we demonstrated for the first time an accumulation of hemosiderin in the heart in the SE-P model. These results suggest that uncontrolled recurrent seizures, as described in refractory epilepsy, can give rise to high hypoxic stress in the heart, thus inducing hemosiderin accumulation as in IOC, and can act as an underlying hidden mechanism contributing to the development of a terminal cardiac arrhythmia in SUDEP. Because iron accumulation in tissues can be detected by non-invasive imaging methods, cardiac iron overload in refractory epilepsy patients could be treated with chelation therapy to reduce the risk of SUDEP.

4.
Sci Rep ; 10(1): 9011, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514154

RESUMO

Autism spectrum disorder (ASD) is a group of developmental pathologies that impair social communication and cause repetitive behaviors. The suggested roles of noncoding RNAs in pathology led us to perform a comparative analysis of the microRNAs expressed in the serum of human ASD patients. The analysis of a cohort of 45 children with ASD revealed that six microRNAs (miR-19a-3p, miR-361-5p, miR-3613-3p, miR-150-5p, miR-126-3p, and miR-499a-5p) were expressed at low to very low levels compared to those in healthy controls. A similar but less pronounced decrease was registered in the clinically unaffected parents of the sick children and in their siblings but never in any genetically unrelated control. Results consistent with these observations were obtained in the blood, hypothalamus and sperm of two of the established mouse models of ASD: valproic acid-treated animals and Cc2d1a+/- heterozygotes. In both instances, the same characteristic miRNA profile was evidenced in the affected individuals and inherited together with disease symptoms in the progeny of crosses with healthy animals. The consistent association of these genetic regulatory changes with the disease provides a starting point for evaluating the changes in the activity of the target genes and, thus, the underlying mechanism(s). From the applied societal and medical perspectives, once properly confirmed in large cohorts, these observations provide tools for the very early identification of affected children and progenitors.


Assuntos
Transtorno do Espectro Autista/sangue , Perfilação da Expressão Gênica , MicroRNAs/sangue , Adolescente , Adulto , Animais , Ansiedade/genética , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/sangue , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/genética , Criança , Pré-Escolar , Depressão/genética , Modelos Animais de Doenças , Diagnóstico Precoce , Comportamento Exploratório , Feminino , Humanos , Hipotálamo/química , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes Neurológicos , MicroRNAs/análise , MicroRNAs/genética , Pais , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Irmãos , Comportamento Social , Espermatozoides/química , Ácido Valproico/toxicidade , Adulto Jovem
5.
Phytomedicine ; 20(7): 632-9, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23453303

RESUMO

In recent years, propolis has been the object of extensive research for its antibacterial, antioxidant, anti-inflammatory, and antitumoral activities. This study aims to determine the hepatoprotective efficiency of propolis on experimental endotoxemia in rats. In the current study, fifty adult Sprague Dawley rats (weighing 200-300 g) were randomly divided into five groups of ten rats each. Normal saline solution was administered to the rats in the control group, while in the second group LPS (30 mg/kg), in the third group propolis (250 mg/kg), in the fourth group first propolis and then LPS (30 mg/kg), and in the fifth group, first LPS (30 mg/kg) and then propolis were given. Six hours after the application, biochemical (MDA levels) and histopathological changes as well as global DNA methylation analysis in the liver tissue samples were determined, while in the blood tissue samples Genomic Template Stability (GTS, %) was evaluated using RAPD-PCR profiles. The results demonstrated that the administration of propolis could have a protective effect against changes of both genomic stability values and methylation profiles, and it minimized the increase in MDA and tissue damage caused by LPS. In conclusion, the application of propolis prior to LPS-induced endotoxemia has shown to reduce hepatic damage.


Assuntos
Endotoxemia/genética , Endotoxemia/metabolismo , Endotoxemia/patologia , Fígado/efeitos dos fármacos , Própole/farmacologia , Substâncias Protetoras/farmacologia , Animais , Metilação de DNA/efeitos dos fármacos , Endotoxemia/induzido quimicamente , Feminino , Instabilidade Genômica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Malondialdeído/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA