Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 9(15): e1901794, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32548961

RESUMO

Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2 ) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties lead to the production of a robust bioink suitable for 3D bioprinting and controlled O2 release. In addition, O2 release, bioprinting conditions, and mechanical performance of hydrogels having different CPO concentrations are characterized. As a proof of concept study, fibroblasts and cardiomyocytes are bioprinted using CPO containing GelMA bioink. Viability and metabolic activity of printed cells are checked after 7 days of culture under hypoxic condition. The results show that the addition of CPO improves the metabolic activity and viability of cells in bioprinted constructs under hypoxic condition.


Assuntos
Bioimpressão , Gelatina , Hidrogéis , Metacrilatos , Impressão Tridimensional
2.
J Control Release ; 190: 82-93, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24818770

RESUMO

Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.


Assuntos
Materiais Biomiméticos , Sistemas de Liberação de Medicamentos , Descoberta de Drogas/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Portadores de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Microfluídica , Nanopartículas
3.
Expert Opin Drug Discov ; 9(4): 335-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24620821

RESUMO

INTRODUCTION: The development of emerging in vitro tissue culture platforms can be useful for predicting human response to new compounds, which has been traditionally challenging in the field of drug discovery. Recently, several in vitro tissue-like microsystems, also known as 'organs-on-a-chip', have emerged to provide new tools for better evaluating the effects of various chemicals on human tissue. AREAS COVERED: The aim of this article is to provide an overview of the organs-on-a-chip systems that have been recently developed. First, the authors introduce single-organ platforms, focusing on the most studied organs such as liver, heart, blood vessels and lung. Later, the authors briefly describe tumor-on-a-chip platforms and highlight their application for testing anti-cancer drugs. Finally, the article reports a few examples of other organs integrated in microfluidic chips along with preliminary multiple-organs-on-a-chip examples. The article also highlights key fabrication points as well as the main application areas of these devices. EXPERT OPINION: This field is still at an early stage and major challenges need to be addressed prior to the embracement of these technologies by the pharmaceutical industry. To produce predictive drug screening platforms, several organs have to be integrated into a single microfluidic system representative of a humanoid. The routine production of metabolic biomarkers of the organ constructs, as well as their physical environment, have to be monitored prior to and during the delivery of compounds of interest to be able to translate the findings into useful discoveries.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Cultura de Tecidos , Alternativas aos Testes com Animais , Animais , Vasos Sanguíneos , Coração , Humanos , Fígado , Pulmão , Microfluídica
4.
Nanotechnology ; 20(22): 225302, 2009 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-19433877

RESUMO

A simple methodology for integrating single-walled carbon nanotubes (SWNTs) onto complementary metal oxide semiconductor (CMOS) circuitry is presented. The SWNTs were incorporated onto the CMOS chip as the feedback resistor of a two-stage Miller compensated operational amplifier utilizing dielectrophoretic assembly. The measured electrical properties from the integrated SWNTs yield ohmic behavior with a two-terminal resistance of approximately 37.5 kOmega and the measured small signal ac gain (-2) from the inverting amplifier confirmed successful integration of carbon nanotubes onto the CMOS circuitry. Furthermore, the temperature response of the SWNTs integrated onto CMOS circuitry has been measured and had a thermal coefficient of resistance (TCR) of -0.4% degrees C(-1). This methodology, demonstrated for the integration of SWNTs onto CMOS technology, is versatile, high yield and paves the way for the realization of novel miniature carbon-nanotube-based sensor systems.


Assuntos
Óxido de Alumínio/química , Microtecnologia/instrumentação , Nanotubos de Carbono/química , Fenômenos Eletromagnéticos , Retroalimentação , Microeletrodos , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/ultraestrutura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA