Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 100(6): 2713-2721, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002998

RESUMO

BACKGROUND: During the manufacture of sucrose from sugar beet, different microorganisms originating from the plant material as well as from the soil enter the process. Due to the formation of polysaccharide-based slimes, these contaminants may induce several adverse effects such as filtration problems during juice purification. Certain microorganisms also metabolize sucrose, leading to product losses with financial consequences. To better understand and to prevent these negative effects, the aim of the study was to investigate the evolution of relevant bacterial groups, including their metabolites appearing during the extraction process. For this purpose, one production cycle was monitored to identify the major contamination steps and to clarify how they relate to the processing conditions. Traditionally, different antimicrobial agents such as formaldehyde, sulfur dioxide, hypochlorous acid, sodium hypochlorite, and chlorine dioxide have been added to inhibit microbial growth. In the present study, a rosin-based product derived from pine trees was applied as an alternative to those substances. RESULTS: Press water, raw juice, and mid-tower juice were identified as being highly contaminated with bacteria, and processing conditions such as time, temperature and pH level significantly influenced bacterial levels and the corresponding metabolites. Among the contaminants identified, lactic acid bacteria, and mesophilic and thermophilic aerobic bacteria played a dominant role, whereas lactic acid, acetic acid, butyric acid, and ethanol were identified as typical metabolites. CONCLUSION: Bacterial growth during production could be reduced by shock dosing of the rosin-based material in the extraction area. © 2020 Society of Chemical Industry.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Beta vulgaris/microbiologia , Anti-Infecciosos/farmacologia , Áustria , Bactérias/efeitos dos fármacos , Manipulação de Alimentos/métodos , Resinas Vegetais/farmacologia , Açúcares
2.
Poult Sci ; 96(11): 4053-4060, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050428

RESUMO

Increasing antibiotic resistance is a major public health concern. Fluoroquinolones are used to treat and prevent poultry diseases worldwide. Fluoroquinolone resistance rates are high in their countries of use. The aim of this study was to evaluate the effect of an acids-based feed additive, as well as fluoroquinolone antibiotics, on the prevalence of antibiotic-resistant E. coli. A total of 480 broiler chickens (Ross 308) were randomly assigned to 3 treatments: a control group receiving a basal diet; a group receiving a feed additive (FA) based on formic acid, acetic acid and propionic acid; and an antibiotic enrofloxacin (AB) group given the same diet, but supplemented with enrofloxacin in water. A pooled fecal sample of one-day-old chicks was collected upon arrival at the experimental farm. On d 17 and d 38 of the trial, cecal samples from each of the 8 pens were taken, and the count of E. coli and antibiotic-resistant E. coli was determined.The results of the present study show a high prevalence of antibiotic-resistant E. coli in one-day-old chicks. Supplementation of the diet with FA and treatment of broilers with AB did not have a significant influence on the total number of E. coli in the cecal content on d 17 and d 38 of the trial. Supplementation with FA contributed to better growth performance and to a significant decrease (P ≤ 0.05) in E. coli resistant to ampicillin and tetracycline compared to the control and AB groups, as well as to a decrease (P ≤ 0.05) in sulfamethoxazole and ciprofloxacin-resistant E. coli compared to the AB group. Treatment with AB increased (P ≤ 0.05) the average daily weight compared to the control group and increased (P ≤ 0.05) the number of E. coli resistant to ciprofloxacin, streptomycin, sulfamethoxazole and tetracycline; it also decreased (P ≤ 0.05) the number of E. coli resistant to cefotaxime and extended spectrum beta-lactamase- (ESBL-) producing E. coli in the ceca of broilers.


Assuntos
Antibacterianos/farmacologia , Galinhas , Suplementos Nutricionais/análise , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Fluoroquinolonas/farmacologia , Doenças das Aves Domésticas/epidemiologia , Ácido Acético/administração & dosagem , Ácido Acético/metabolismo , Ração Animal/análise , Animais , Ceco/microbiologia , Dieta/veterinária , Enrofloxacina , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Formiatos/administração & dosagem , Formiatos/metabolismo , Masculino , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Prevalência , Propionatos/administração & dosagem , Propionatos/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA