RESUMO
BACKGROUND: Tea consumption might be closely related to non-malignant digestive diseases. Nevertheless, this correlation remains inadequately comprehended. Therefore, our objective was to elucidate the essence of these connections. METHODS: This study employed a Mendelian randomization approach to investigate the impact of tea consumption on specific digestive disorders. Genetic data associated with tea consumption were obtained from the UK Biobank (UKB), encompassing 447,485 participants. We chose a gene-wide association study with no sample overlap and UKB as our data source for all outcomes. The primary analytical method utilized was inverse variance weighting, and multiple analytical models were employed to enhance the analysis's reliability and ensure robust results. RESULT: Our investigation revealed that tea consumption was linked to an elevated susceptibility to gastroesophageal reflux disease (GERD). However, there was a lack of substantial evidence suggesting an association between tea intake and Crohn's disease (CD), ulcerative colitis (UC), or non-alcoholic fatty liver disease (NAFLD). CONCLUSIONS: Our study suggests that the excessive consumption of tea may heighten the likelihood of GERD. These results hold potential significance in guiding dietary pattern modifications for individuals with GERD. Furthermore, there may be value in implementing GERD monitoring and preventive measures in populations with elevated tea consumption.
Assuntos
Colite Ulcerativa , Doenças do Sistema Digestório , Refluxo Gastroesofágico , Humanos , Doenças do Sistema Digestório/epidemiologia , Doenças do Sistema Digestório/genética , Refluxo Gastroesofágico/genética , Reprodutibilidade dos Testes , Chá , Análise da Randomização MendelianaRESUMO
Background: Although studies suggest that concentrations of serum 25-hydroxyvitamin D (25(OH)D) are lower in individuals with Heart Failure (HF), the beneficial effects of vitamin D supplementation are controversial. Therefore, in this study, we aimed to determine whether there is a causal relationship between serum Vitamin D (VD) levels and HF. Methods: We obtained genetic instruments from the largest available genome-wide association study (GWAS) of European descent for 25(OH)D (443, 734 individuals) to investigate the association with HF (47,309 cases, 930,014 controls), and vice versa. Two-sample bidirectional Mendelian Randomization (MR) analysis was performed to infer the causality. In addition to the primary analysis using inverse variance-weighted (IVW) MR, we applied five additional methods to control for pleiotropy [MR-Egger, weighted median, Maximum-likelihood, MR-robust adjusted profile score (MR-RAPS) and MR-pleiotropy residual sum and outlier (MR-PRESSO)] and compared their respective MR estimates. We also performed a sensitivity analysis to ensure that our results were robust. Results: Mendelian randomized analysis showed that increased serum 25(OH)D was associated with a lower risk of HF in the IVW method (odds ratio [OR] = 0. 81;95%CI, 0.70-0.94, P = 0.006). In the reverse MR analyses, the genetic predisposition to HF was negatively correlated with serum 25(OH)D level (OR = 0. 89;95%CI, (0.82-0.97), P = 0.009). Conclusion: Our study revealed the possible causal role of 25(OH)D on decreasing the risk for HF. Meanwhile, reverse MR analysis suggested that HF may be associated with lower vitamin D levels, it could be the potential implications for dietary recommendations.
RESUMO
Polyphyllin I (PPI), a small molecular monomer extracted from Rhizoma of Paris polyphyllin, shows strong anticancer effects in previous study. Human lung adenocarcinoma A549 cells, human lung squamous cell carcinoma SK-MES-1 cells, and human lung large cell carcinoma H460 cells were cultured and then treated with PPI. Cell proliferation and apoptosis were measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, flow cytometry, western blot analysis, and DNA ladder. Athymic nude mice bearing tumors were injected with PPI, and tumor growth was recorded. Our results showed that PPI significantly inhibited the proliferation of three non-small cell lung cancer (NSCLC) cell lines, with the inhibitory concentrations (IC50) of 1.24, 2.40, and 2.33 µg/ml for A549, H460, and SK-MES-1 cells, respectively. After being treated with 2.5 µg/ml of PPI for 24 h, the apoptotic rate of A549 cells was 39.68%, which was remarkably higher than that of the control. Tumor growth was significantly inhibited in the PPI-treated group compared with the group treated with cisplatin (DDP) or PBS in the nude mice. PPI exhibits antitumor ability in NSCLC cells in vitro and in vivo, which might be related to the apoptosis induced by PPI.