Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 762, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278810

RESUMO

A wearable biological patch capable of producing multiple responses to light and electricity without interfering with daily activities is highly desired for skin cancer treatment, but remains a key challenge. Herein, the skin-mountable electrostimulation-augmented photothermal patch (eT-patch) comprising transparent ionic gel with MXene (Ti3C2Tx) doping is developed and applied for the treatment of melanoma under photostimulation at 0.5 W/cm2. The eT-patch designed has superior photothermal and electrical characteristics owing to ionic gels doped with MXene which provides high photothermal conversion efficiency and electrical conductivity as a medium. Simultaneously, the ionic gel-based eT-patch having excellent optical transparency actualizes real-time observation of skin response and melanoma treatment process under photothermal and electrical stimulation (PES) co-therapy. Systematical cellular study on anti-tumor mechanism of the eT-patch under PES treatment revealed that eT-patch under PES treatment can synergically trigger cancer cell apoptosis and pyroptosis, which together lead to the death of melanoma cells. Due to the obvious advantages of relatively safe and less side effects in healthy organs, the developed eT-patch provides a promising cost-effective therapeutic strategy for skin tumors and will open a new avenue for biomedical applications of ionic gels.


Assuntos
Terapia por Estimulação Elétrica , Melanoma , Nitritos , Neoplasias Cutâneas , Elementos de Transição , Dispositivos Eletrônicos Vestíveis , Humanos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Géis , Íons
2.
ACS Appl Mater Interfaces ; 6(1): 500-6, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24308420

RESUMO

In this work, we introduced a facile method for the construction of a polypyrrole/hemin (PPy/hemin) nanocomposite via one-pot chemical oxidative polymerization. In this process, a hemin molecule serving as a dopant was entrapped in the PPy nanocomposite during chemical oxidative polymerization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy results demonstrated that the PPy/hemin nanocomposite was successfully synthesized. The as-prepared nanocomposite exhibited intrinsic peroxidase-like catalytic activities, strong adsorption properties, and an excellent near-infrared (NIR) light-induced thermal effect. We utilized the nanomaterials to catalyze the oxidation of a peroxidase substrate 3,3,5,5-tetramethylbenzidine by H2O2 to the oxidized colored product which provided a colorimetric detection of glucose. As low as 50 µM glucose could be detected with a linear range from 0.05 to 8 mM. Moreover, the obtained nanocomposite also showed excellent removal efficiency for methyl orange and rhodamine B and a photothermal effect, which implied a promising application as the pollutant adsorbent and photothermal agent. The unique nature of the PPy/hemin nanocomposite makes it very promising for the fabrication of inexpensive, high-performance bioelectronic devices in the future.


Assuntos
Técnicas Biossensoriais , Corantes/isolamento & purificação , Hemina/síntese química , Hipertermia Induzida , Nanocompostos , Fototerapia , Polímeros/síntese química , Pirróis/síntese química , Adsorção , Glucose/análise , Microscopia Eletrônica/métodos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Biosens Bioelectron ; 24(7): 1979-83, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19101135

RESUMO

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide that is most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal. This phenomenon can be used to detect ATP and get a very sensitive detection limit low to 0.1nM, and the detection range could extend up to 10(-7)M. Compared to the sensing platform without PCS2 grafted AuNPs, amplified function of this sensing system was also evidently proved. Therefore, such PCS1-ABA-PCS2/AuNPs sensing system could provide a promising signal-amplified model for aptamer-based small-molecules detection.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Peptídeos/química , Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Microeletrodos , Nanopartículas/química , Nanotecnologia/instrumentação , Trifosfato de Adenosina/química , Aptâmeros de Peptídeos/análise , Peso Molecular , Nanopartículas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA