Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364288

RESUMO

Chemotherapeutic agent-induced nausea and vomiting are the severe adverse effects that are induced by their stimulations on the peripheral and/or central emetic nerve pathways. Even though ginger has been widely used as an herbal medicine to treat emesis, mechanisms underlying its neuronal actions are still less clear. The present study aimed to determine the chemotherapeutic agent vincristine-induced effect on gastroesophageal vagal afferent nerve endings and the potential inhibitory role of ginger constituent 6-shogaol on such response. Two-photon neuron imaging studies were performed in ex vivo gastroesophageal-vagal preparations from Pirt-GCaMP6 transgenic mice. Vincristine was applied to the gastroesophageal vagal afferent nerve endings, and the evoked calcium influxes in their intact nodose ganglion neuron somas were recorded. The responsive nodose neuron population was first characterized, and the inhibitory effects of 5-HT3 antagonist palonosetron, TRPA1 antagonist HC-030031, and ginger constituent 6-shogaol were then determined. Vincristine application at gastroesophageal vagal afferent nerve endings elicited intensive calcium influxes in a sub-population of vagal ganglion neurons. These neurons were characterized by their positive responses to P2X2/3 receptor agonist α,ß-methylene ATP and TRPA1 agonist cinnamaldehyde, suggesting their nociceptive placodal nodose C-fiber neuron lineages. Pretreatment with TRPA1 selective blocker HC-030031 inhibited vincristine-induced calcium influxes in gastroesophageal nodose C-fiber neurons, indicating that TRPA1 played a functional role in mediating vincristine-induced activation response. Such inhibitory effect was comparable to that from 5-HT3 receptor antagonist palonosetron. Alternatively, pretreatment with ginger constituent 6-shogaol significantly attenuated vincristine-induced activation response. The present study provides new evidence that chemotherapeutic agent vincristine directly activates vagal nodose nociceptive C-fiber neurons at their peripheral nerve endings in the upper gastrointestinal tract. This activation response requires both TRPA1 and 5-HT3 receptors and can be attenuated by ginger constituent 6-shogaol.


Assuntos
Zingiber officinale , Camundongos , Animais , Vincristina/farmacologia , Cálcio/farmacologia , Palonossetrom/farmacologia , Esôfago/inervação , Potenciais de Ação , Camundongos Transgênicos
2.
Br J Anaesth ; 128(1): 159-173, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34844727

RESUMO

BACKGROUND: Cannabinoid type-1 receptors (CB1Rs) are expressed in primary sensory neurones, but their role in pain modulation remains unclear. METHODS: We produced Pirt-CB1R conditional knockout (cKO) mice to delete CB1Rs in primary sensory neurones selectively, and used behavioural, pharmacological, and electrophysiological approaches to examine the influence of peripheral CB1R signalling on nociceptive and inflammatory pain. RESULTS: Conditional knockout of Pirt-CB1R did not alter mechanical or heat nociceptive thresholds, complete Freund adjuvant-induced inflammation, or heat hyperalgesia in vivo. The intrinsic membrane properties of small-diameter dorsal root ganglion neurones were also comparable between cKO and wild-type mice. Systemic administration of CB-13, a peripherally restricted CB1/CB2R dual agonist (5 mg kg-1), inhibited nociceptive pain and complete Freund adjuvant-induced inflammatory pain. These effects of CB-13 were diminished in Pirt-CB1R cKO mice. In small-diameter neurones from wild-type mice, CB-13 concentration-dependently inhibited high-voltage activated calcium current (HVA-ICa) and induced a rightward shift of the channel open probability curve. The effects of CB-13 were significantly attenuated by AM6545 (a CB1R antagonist) and Pirt-CB1R cKO. CONCLUSION: CB1R signalling in primary sensory neurones did not inhibit nociceptive or inflammatory pain, or the intrinsic excitability of nociceptive neurones. However, peripheral CB1Rs are important for the analgesic effects of systemically administered CB-13. In addition, HVA-ICa inhibition appears to be a key ionic mechanism for CB-13-induced pain inhibition. Thus, peripherally restricted CB1R agonists could have utility for pain treatment.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Naftalenos/farmacologia , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Analgésicos/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/fisiopatologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo
3.
Neurogastroenterol Motil ; 31(6): e13585, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30947399

RESUMO

BACKGROUND: Ginger has been used as an herbal medicine worldwide to relieve nausea/vomiting and gastrointestinal discomfort, but the cellular and molecular mechanisms of its neuronal action remain unclear. The present study aimed to determine the effects of ginger constituent 6-shogaol on gastroesophageal vagal nodose C-fibers. METHODS: Extracellular single-unit recording and two-photon nodose neuron imaging were performed, respectively, in ex vivo gastroesophageal-vagal preparations from wild type and Pirt-GCaMP6 transgenic mice. The action potential discharge or calcium influx evoked by mechanical distension and chemical perfusions applied to the gastroesophageal vagal afferent nerve endings were recorded, respectively, at their intact neuronal cell soma in vagal nodose ganglia. The effects of 6-shogaol on nodose C-fiber neurons were then compared and determined. KEY RESULTS: Gastroesophageal application of 6-shogaol-elicited intensive calcium influxes in nodose neurons and evoked robust action potential discharges in most studied nodose C-fibers. Such activation effects were followed by a desensitized response to the second application of 6-shogaol. However, action potential discharges evoked by esophageal mechanical distension, after 6-shogaol perfusion, did not significantly change. Pretreatment with TRPA1 selective blocker HC-030031 inhibited 6-shogaol-induced action potential discharges in gastric and esophageal nodose C-fiber neurons, suggesting that TRPA1 played a role in mediating 6-shogaol-induced activation response. CONCLUSION AND INFERENCES: This study provides evidence that ginger constituent 6-shogaol directly activates vagal afferent C-fiber peripheral gastrointestinal endings. This activation leads to desensitization to subsequent application of 6-shogaol but not subsequent esophageal mechanical distension. Further investigation is required to establish a possible contribution in its anti-emetic effects.


Assuntos
Catecóis/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Gânglio Nodoso/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Esôfago/efeitos dos fármacos , Esôfago/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estômago/efeitos dos fármacos , Estômago/inervação
4.
Sci Rep ; 8(1): 11328, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054511

RESUMO

Sophorae Flavescentis Radix (SFR) is a medicinal herb with many functions that are involved in anti-inflammation, antinociception, and anticancer. SFR is also used to treat a variety of itching diseases. Matrine (MT) is one of the main constituents in SFR and also has the effect of relieving itching, but the antipruritic mechanism is still unclear. Here, we investigated the effect of MT on anti-pruritus. In acute and chronic itch models, MT significantly inhibited the scratching behavior not only in acute itching induced by histamine (His), chloroquine (CQ) and compound 48/80 with a dose-depended manner, but also in the chronic pruritus models of atopic dermatitis (AD) and acetone-ether-water (AEW) in mice. Furthermore, MT could be detected in the blood after intraperitoneal injection (i.p.) and subcutaneous injection (s.c.). Finally, electrophysiological and calcium imaging results showed that MT inhibited the excitatory synaptic transmission from dorsal root ganglion (DRG) to the dorsal horn of the spinal cord by suppressing the presynaptic N-type calcium channel. Taken together, we believe that MT is a novel drug candidate in treating pruritus diseases, especially for histamine-independent and chronic pruritus, which might be attributed to inhibition of the presynaptic N-type calcium channel.


Assuntos
Alcaloides/administração & dosagem , Antipruriginosos/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Prurido/tratamento farmacológico , Quinolizinas/administração & dosagem , Alcaloides/química , Animais , Antipruriginosos/química , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/genética , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Camundongos , Prurido/genética , Prurido/patologia , Quinolizinas/química , Sophora/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Matrinas
5.
Biochem Pharmacol ; 148: 147-154, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274317

RESUMO

Pseudo-allergic reactions-adverse, non-immunologic, anaphylaxis-like sudden onset reactions mediated through an IgE-independent pathway-are activated by various basic compounds and occur at least as frequently as IgE-mediated reactions to drugs. A large family of G protein coupled receptors (Mas-related genes; Mrgprs) is closely related to pseudo-allergies. However, few therapies can directly target pseudo-allergies and related Mrgprs. Saikosaponin A (SSA) is effective in the treatment of passive cutaneous anaphylaxis (PCA), adjuvant arthritis, and delayed hypersensitiveness. In this study, we investigated the anti-pseudo-allergy effect of SSA and its underlying mechanism. We examined the effect of SSA on both IgE-independent and IgE-dependent responses using PCA and active systemic anaphylaxis models, as well as in vitro-cultured mast cells. We also evaluated whether the anti-allergy effect is related to Mrgprs by using in vitro Mrgprx2-expressing HEK293 cells. SSA dose dependently suppressed compound 48/80 (C48/80)-induced PCA and mast cell degranulation in mice. When SSA and C48/80 were administered together through the vein, C48/80-induced systemic anaphylaxis did not occur, and C48/80-induced shock ratio decreased dose-dependently upon SSA treatment. However, SSA did not affect IgE-dependent allergy. When administered topically 24 h before antigen challenge, Evans blue leakage and paw swelling were induced in the SSA-treated group and the vehicle group. Our in vitro studies revealed that SSA reduced C48/80-induced calcium flux and suppressed degranulation in LAD2 cells. SSA could also dose-dependently inhibit C48/80-induced Mrgprx2-expressing HEK293 cell activation. As a conclusion, SSA could inhibits IgE-independent allergy, but not IgE-dependent allergy, and this effect involves the Mrgprx2 pathway. This study provided a new sight on pseudo-allergy and its therapy.


Assuntos
Ácido Oleanólico/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Saponinas/farmacologia , p-Metoxi-N-metilfenetilamina/toxicidade , Animais , Edema/induzido quimicamente , Edema/prevenção & controle , Imunoglobulina E , Masculino , Mastócitos , Camundongos , Ácido Oleanólico/farmacologia , Anafilaxia Cutânea Passiva
6.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28299842

RESUMO

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Assuntos
Sistema Nervoso Central/citologia , Eletroacupuntura , Células-Tronco Mesenquimais/citologia , Tendão do Calcâneo/patologia , Pontos de Acupuntura , Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Humanos , Hiperalgesia/terapia , Hipotálamo/citologia , Interleucina-10/sangue , Macrófagos/citologia , Camundongos , Rede Nervosa/fisiologia , Ratos , Ruptura , Células Receptoras Sensoriais/metabolismo , Proteína Desacopladora 1/metabolismo
7.
Respir Res ; 17(1): 62, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27215903

RESUMO

BACKGROUND: The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. METHODS: The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). RESULTS: SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments. CONCLUSIONS: SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.


Assuntos
Antivirais/farmacologia , Capsaicina/farmacologia , Vírus da Influenza A/patogenicidade , Neurônios Aferentes/efeitos dos fármacos , Oligopeptídeos/farmacologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores Acoplados a Proteínas G/agonistas , Traqueia/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Predisposição Genética para Doença , Humanos , Técnicas In Vitro , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neurônios Aferentes/metabolismo , Neurônios Aferentes/virologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia , Fragmentos de Peptídeos/farmacologia , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traqueia/inervação , Traqueia/metabolismo , Traqueia/virologia
8.
ChemMedChem ; 10(1): 57-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25209672

RESUMO

Previous studies have shown that the activation of mouse MrgC11, a G-protein-coupled receptor, by its peptide ligand BAM8-22 can inhibit chronic pain. A large-scale screen has been carried out to isolate small-molecule allosteric agonists of MrgX1, the human homologue of MrgC11. The goal of this study is to improve the efficacy and potency of positive allosteric modulators (PAMs) with therapeutic implications in combating chronic pain. Herein we report an iterative parallel synthesis effort and a structure-activity relationship study of a series of arylsulfonamides which led to the discovery of the first PAM of MrgX1, ML382.


Assuntos
Benzamidas/química , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/química , Regulação Alostérica , Animais , Benzamidas/metabolismo , Benzamidas/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Meia-Vida , Humanos , Camundongos , Ligação Proteica , Ratos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética
9.
J Neurosci ; 32(42): 14532-7, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077038

RESUMO

ß-Alanine, a popular supplement for muscle building, induces itch and tingling after consumption, but the underlying molecular and neural mechanisms are obscure. Here we show that, in mice, ß-alanine elicited itch-associated behavior that requires MrgprD, a G-protein-coupled receptor expressed by a subpopulation of primary sensory neurons. These neurons exclusively innervate the skin, respond to ß-alanine, heat, and mechanical noxious stimuli but do not respond to histamine. In humans, intradermally injected ß-alanine induced itch but neither wheal nor flare, suggesting that the itch was not mediated by histamine. Thus, the primary sensory neurons responsive to ß-alanine are likely part of a histamine-independent itch neural circuit and a target for treating clinical itch that is unrelieved by anti-histamines.


Assuntos
Prurido/etiologia , Prurido/metabolismo , Receptores Acoplados a Proteínas G/biossíntese , beta-Alanina/toxicidade , Adulto , Animais , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Técnicas de Introdução de Genes , Humanos , Injeções Intradérmicas/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prurido/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Adulto Jovem
10.
Nat Neurosci ; 14(5): 595-602, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21460831

RESUMO

Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. In many cases, pathological itch is insensitive to antihistamine treatment. Recent studies have identified members of the Mas-related G protein-coupled receptor (Mrgpr) family that are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and MrgprC11 act as receptors for the pruritogens chloroquine and BAM8-22, respectively. However, the signaling pathways and transduction channels activated downstream of these pruritogens are largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and MrgprC11 in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited markedly diminished responses to chloroquine and BAM8-22. Similarly, TRPA1-deficient mice displayed little to no scratching in response to these pruritogens. Our findings indicate that TRPA1 is an essential component of the signaling pathways that promote histamine-independent itch.


Assuntos
Histamina/efeitos adversos , Prurido/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Antirreumáticos , Cálcio/metabolismo , Capsaicina/farmacologia , Células Cultivadas , Cloroquina , Modelos Animais de Doenças , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mostardeira , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Óleos de Plantas/farmacologia , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Canal de Cátion TRPA1 , Fatores de Tempo , Transfecção/métodos , Canais de Potencial de Receptor Transitório/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA