Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 37, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500049

RESUMO

BACKGROUND: The mass occurrence of scyphozoan jellyfish severely affects marine ecosystems and coastal economies, and the study of blooming jellyfish population dynamics has emerged in response. However, traditional ecological survey methods required for such research have difficulties in detecting cryptic life stages and surveying population dynamics owing to high spatiotemporal variations in their occurrence. The environmental DNA (eDNA) technique is an effective tool for overcoming these limitations. RESULTS: In this study, we investigated the biodiversity and spatial distribution characteristics of blooming jellyfish in the Bohai Sea of China using an eDNA metabarcoding approach, which covered the surface, middle, and bottom seawater layers, and sediments. Six jellyfish taxa were identified, of which Aurelia coerulea, Nemopilema nomurai, and Cyanea nozakii were the most dominant. These three blooming jellyfish presented a marked vertical distribution pattern in the offshore regions. A. coerulea was mainly distributed in the surface layer, whereas C. nozakii and N. nomurai showed a upper-middle and middle-bottom aggregation, respectively. Horizontally, A. coerulea and C. nozakii were more abundant in the inshore regions, whereas N. nomurai was mainly distributed offshore. Spearman's correlation analysis revealed a strong correlation between the eDNA of the three dominant blooming jellyfish species and temperature, salinity, and nutrients. CONCLUSIONS: Our study confirms the applicability of the eDNA approach to both biodiverstiy evaluation of blooming jellyfish and investigating their spatial distribution, and it can be used as a supplementary tool to traditional survey methods.


Assuntos
Cnidários , Venenos de Cnidários , DNA Ambiental , Cifozoários , Animais , Ecossistema , DNA Ambiental/genética , Cifozoários/genética , Biodiversidade
2.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
3.
Mol Ecol ; 33(4): e17249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38133544

RESUMO

Understanding the mechanisms underlying diapause formation is crucial for gaining insight into adaptive survival strategies across various species. In this study, we aimed to uncover the pivotal role of temperature and food availability in regulating diapausing podocyst formation in the jellyfish Aurelia coerulea. Furthermore, we explored the cellular and molecular basis of diapause formation using single-cell RNA sequencing. Our results showed cell-type-specific transcriptional landscapes during podocyst formation, which were underscored by the activation of specific transcription factors and signalling pathways. In addition, we found that the heat shock protein-coding genes HSC70 and HSP90a potentially act as hub genes that regulate podocyst formation. Finally, we mapped the single-cell atlas of diapausing podocysts and identified cell types involved in metabolism, environmental sensing, defence and development that may collectively contribute to the long-term survival and regulated excystment of diapausing podocysts. Taken together, the findings of this study provide novel insights into the molecular mechanisms that regulate diapause formation and contributes to a better understanding of adaptive survival strategies in a variety of ecological contexts.


Assuntos
Diapausa , Cifozoários , Animais , Cifozoários/genética , Temperatura , Diapausa/genética
4.
J Mater Chem B ; 10(27): 5154-5164, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35666635

RESUMO

Tumor-triggered targeting ammonium bicarbonate (TTABC) liposomes were proposed to improve the uptake of ammonium bicarbonate (ABC) liposomes in tumor cells and retain their long circulation in vivo in our previous study. However, it must be solved how to precisely release the loaded drugs of the TTABC liposomes into tumor cells. In addition, synergistic multimodal therapy could result in better tumor treatment outcomes than monomodal chemotherapy. In the research, we prepared indocyanine green (ICG) and doxorubicin (DOX) encapsulated TTABC liposomes (ICG&DOX@TTABC) to achieve near-infrared (NIR) light-controlled chemo/photothermal/photodynamic multimodal therapy guided by fluorescence and photothermal imaging. In vitro and vivo studies show that ICG&DOX@TTABC can specifically accumulate in tumor tissues, effectively transform NIR light into local thermo-therapy, and have excellent anti-tumor ability without obvious side effects. ICG&DOX@TTABC could be promising for fluorescence and photothermal imaging-guided chemo/photothermal/photodynamic tumor treatment.


Assuntos
Lipossomos , Neoplasias , Bicarbonatos , Terapia Combinada , Doxorrubicina , Humanos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia/métodos
5.
Mar Pollut Bull ; 175: 113171, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34844749

RESUMO

Analysis of the common and most influential natural and anthropogenic activities on the spatiotemporal variation in nutrients at a multiannual scale is important. Eleven cruises from 2015 to 2017 were carried out to better elucidate the seasonal and spatial variations in nutrients, as well as the impact factors on dissolved inorganic nitrogen (DIN), phosphorus (DIP) and silicate (DSi). Both nutrient concentrations and forms showed similar and significant seasonal variations over the 3 years, and were closely related to the biomass and species of phytoplankton. Terrestrial inputs had significant effects on the spatial distribution of nutrients throughout the year, especially in the surface water, which showed DIN > DIP>DSi. In summer, shellfish aquaculture and hypoxia jointly affected the spatial distribution of nutrients. The bottom water nutrient concentrations in the aquaculture area were 1.1-2.3 times higher than those outside of the aquaculture area. Seasonal hypoxia can increase the release of DSi and NH4+ from the sediment to the water. In summary, anthropogenic activities and physical conditions jointly influenced the nutrient distributions.


Assuntos
Efeitos Antropogênicos , Monitoramento Ambiental , China , Nitrogênio/análise , Nutrientes/análise , Fósforo/análise , Estações do Ano , Água do Mar
6.
Mar Environ Res ; 139: 144-150, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29789135

RESUMO

Rapidly rising levels of atmospheric CO2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases.


Assuntos
Dióxido de Carbono/toxicidade , Cifozoários/fisiologia , Animais , Concentração de Íons de Hidrogênio , Larva , Oceanos e Mares , Água do Mar/química , Estresse Fisiológico , Temperatura
7.
Mar Pollut Bull ; 129(1): 86-91, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680572

RESUMO

Blooms of the moon jellyfish Aurelia coerulea frequently occur in coastal waters. The increased availability of substrates for the settlement and proliferation of polyps due to the expansion of artificial structures in coastal areas has been proposed as a possible contributing factor in jellyfish blooms. This paper investigates whether a marine artificial lake (Fenghuang Lake) provides additional substrates for A. coerulea polyps and contributes to jellyfish blooms. High densities of A. coerulea ephyrae were discovered in this lake, with a mean density of 41 individuals/m3 and a maximum measured density of 128 individuals/m3. Meanwhile, A. coerulea ephyrae were also found in the two emptying channels outside the lake, with a mean density of 13 individuals/m3. Underwater surveys revealed that dense colonies of A. coerulea polyps occurred mainly on biogenic reefs formed by a polychaete, which was identified as an invasive serpulid species Hydroides dianthus, based on the phylogenetic analysis of mitochondrial COI gene sequences. Our study highlights the potential modification of habitats by the alien polychaete H. dianthus, which might provide complex benthic habits suitable for the settlement and proliferation of A. coerulea polyps and may contribute to jellyfish blooms in the marine artificial lake and nearby coastal waters.


Assuntos
Espécies Introduzidas/tendências , Lagos/química , Estágios do Ciclo de Vida , Poliquetos/crescimento & desenvolvimento , Cifozoários/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , China , Ecossistema , Monitoramento Ambiental , Filogenia , Poliquetos/fisiologia
8.
PLoS One ; 12(8): e0182787, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28777817

RESUMO

The moon jellyfish (Aurelia sp.1) is thought to be a nuisance for the sea cucumber aquaculture, which commonly occur in the sea cucumber (Apostichopus japonicus) culture ponds of the Yellow Sea, China. To develop an appropriate method to control Aurelia sp.1 blooms, the toxic effects of tea saponin on Aurelia sp.1 ephyrae and polyps were tested in laboratory experiments. Our results revealed that tea saponin caused significant morphological changes, behavioral abnormality and mortality in Aurelia sp.1 ephyrae and polyps in 24 h and 48 h exposure experiments. The 24 h and 48 h median lethal concentrations (LC50) values of tea saponin for Aurelia sp.1 ephyrae were 1.9 and 1.1 mg L-1 respectively, while the LC50 value for Aurelia sp.1 polyps was 0.4 mg L-1 after 24h and 48 h of exposure to tea saponin. Comparison with literature results of tea saponin on A. japonicus indicates that the resistance of A. japonicus to tea saponin is 12-18 times greater than that of Aurelia sp.1 ephyrae. Therefore, the appropriate tea saponin dosage for the control of Aurelia sp.1 should be paid enough attention in order to minimize possible damage for sea cucumber. We suggest that the recommended level of tea saponin to eradicate Aurelia sp.1 ephyrae and polyps in sea cucumber culture ponds be lower than 1.35 mg L-1.


Assuntos
Embrião não Mamífero/citologia , Desenvolvimento Embrionário/efeitos dos fármacos , Pólipos/mortalidade , Saponinas/toxicidade , Cifozoários/crescimento & desenvolvimento , Chá/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Pólipos/tratamento farmacológico , Cifozoários/efeitos dos fármacos
9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2318-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25774948

RESUMO

Blooms of the harmful jellyfish Cyanea nozakii, which are a severe nuisance to fisheries and tourisms, frequently occur in the northern East China Sea, Yellow Sea, and Bohai Sea. To provide early warning of this species, a simple and effective molecular method for identifying C. nozakii was developed using the loop-mediated isothermal amplification method (LAMP). The LAMP assay is highly specific and uses a set of four primers that target six different regions on the mitochondrial cytochrome c oxidase subunit I (COI) gene of C. nozakii. The amplification conditions, including the dNTP and betaine concentrations, the inner primer to outer primer concentration ratio, reaction time and temperature, were optimized. The LAMP assay amplified DNA extracted from tissue samples of C. nozakii but did not amplify DNA from other common scyphozoans and hydrozoans collected in the same region. In addition, the LAMP assay was more sensitive than conventional PCR. Therefore, the established LAMP assay is a sensitive, specific, fast, and easily performed method for detection of C. nozakii at different stages in their life cycle.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Cifozoários/classificação , Cifozoários/genética , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Mar Pollut Bull ; 64(12): 2708-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23098836

RESUMO

The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates.


Assuntos
Baías/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , China , Clorofila/análise , Clorofila A , Atividades Humanas , Humanos , Nitrogênio/análise , Oceanos e Mares , Fósforo/análise , Estações do Ano , Água do Mar , Temperatura , Poluição Química da Água/análise
11.
Mar Pollut Bull ; 60(7): 954-63, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20553695

RESUMO

Three jellyfish species, Aurelia aurita, Cyanea nozakii and Nemopilema nomurai, form large blooms in Chinese seas. We report on the distribution and increasing incidence of jellyfish blooms and their consequences in Chinese coastal seas and analyze their relationship to anthropogenically derived changes to the environment in order to determine the possible causes. A. aurita, C. nozakii and N. nomurai form blooms in the temperate Chinese seas including the northern East China Sea, Yellow Sea and Bohai Sea. N. nomurai forms offshore blooms while the other two species bloom mainly in inshore areas. Eutrophication, overfishing, habitat modification for aquaculture and climate change are all possible contributory factors facilitating plausible mechanisms for the proliferation of jellyfish blooms. In the absence of improvement in coastal marine ecosystem health, jellyfish blooms could be sustained and may even spread from the locations in which they now occur.


Assuntos
Mudança Climática , Ecossistema , Eutrofização , Cifozoários/crescimento & desenvolvimento , Animais , Aquicultura/estatística & dados numéricos , China , Dinâmica Populacional , Cifozoários/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA