Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angew Chem Int Ed Engl ; 63(7): e202311309, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140920

RESUMO

Nanomaterial-based in vivo tumor imaging and therapy have attracted extensive attention; however, they suffer from the unintelligent "always ON" or single-parameter responsive signal output, substantial off-target effects, and high cost. Therefore, achieving in vivo easy-to-read tumor imaging and precise therapy in a multi-parameter responsive and intelligent manner remains challenging. Herein, an intelligent DNA nanoreactor (iDNR) was constructed following the "AND" Boolean logic algorithm to address these issues. iDNR-mediated in situ deposition of photothermal substance polydopamine (PDA) can only be satisfied in tumor tissues with abundant membrane protein biomarkers "AND" hydrogen peroxide (H2 O2 ). Therefore, intelligent temperature-based in vivo easy-to-read tumor imaging is realized without expensive instrumentation, and its diagnostic performance matches with that of flow cytometry, and photoacoustic imaging. Moreover, precise photothermal therapy (PTT) of tumors could be achieved via intelligent heating of tumor tissues. The precise PTT of primary tumors in combination with immune checkpoint blockade (ICB) therapy suppresses the growth of distant tumors and inhibits tumor recurrence. Therefore, highly programmable iDNR is a powerful tool for intelligent biomedical applications.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/patologia , Fototerapia/métodos , Nanotecnologia , Linhagem Celular Tumoral , Microambiente Tumoral
2.
J Pharm Biomed Anal ; 236: 115715, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37769526

RESUMO

Huo-Xiang-Zheng-Qi oral liquid (HXZQOL) is a well-known traditional Chinese medicine formula for the treatment of gastrointestinal diseases, with the pharmacologic effects of antiinflammatory, immune protection and gastrointestinal motility regulation. More significantly, HXZQOL is recommended for the treatment of COVID-19 patients with gastrointestinal symptoms, and it has been clinically proven to reduce the inflammatory response in patients with COVID-19. However, the effective and overall quality control of HXZQOL is currently limited due to its complex composition, especially the large amount of volatile and non-volatile active components involved. In this study, aimed to fully develop a comprehensive strategy based on non-targeted multicomponent identification, targeted authentication and quantitative analysis for quality evaluation of HXZQOL from different batches. Firstly, the non-targeted high-definition MSE (HDMSE) approach is established based on UHPLC/IM-QTOF-MS, utilized for multicomponent comprehensive characterization of HXZQOL. Combined with in house library-driven automated peak annotation and comparison of 47 reference compounds, 195 components were initially identified. In addition, HS-SPME-GC-MS was employed to analyze the volatile organic compounds (VOCs) in HXZQOL, and a total of 61 components were identified by comparison to the NIST database, reference compounds as well as retention indices. Secondly, based on the selective ion monitoring (SIM) of 24 "identity markers" (involving each herbal medicine), characteristic chromatograms (CCs) were established on LC-MS and GC-MS respectively, to authenticate 15 batches of HXZQOL samples. The targeted-SIM CCs showed that all marker compounds in 15 batches of samples could be accurately monitored, which could indicate preparations authenticity. Finally, a parallel reaction monitoring (PRM) method was established and validated to quantify the nine compounds in 15 batches of HXZQOL. Conclusively, this study first reports chemical-material basis, SIM CCs and quality evaluation of HXZQOL, which is of great implication to quality control and ensuring the authenticity of the preparation.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Qi , Cromatografia Líquida de Alta Pressão/métodos , Medicina Tradicional Chinesa , Espectrometria de Massas , Medicamentos de Ervas Chinesas/análise
3.
Sci Adv ; 9(31): eadf3329, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531423

RESUMO

Current clinical approaches to osteoporosis primarily target osteoclast biology, overlooking the synergistic role of bone cells, immune cells, cytokines, and inorganic components in creating an abnormal osteoporotic microenvironment. Here, metal-polyDNA nanoparticles (Ca-polyCpG MDNs) composed of Ca2+ and ultralong single-stranded CpG sequences were developed to reconstruct the osteoporotic microenvironment and suppress osteoporosis. Ca-polyCpG MDNs can neutralize osteoclast-secreted hydrogen ions, provide calcium repletion, promote remineralization, and repair bone defects. Besides, the immune-adjuvant polyCpG in MDNs could induce the secretion of osteoclastogenesis inhibitor interleukin-12 and reduce the expression of osteoclast function effector protein to inhibit osteoclast differentiation, further reducing osteoclast-mediated bone resorption. PPi4- generated during the rolling circle amplification reaction acts as bisphosphonate analog and enhances bone targeting of Ca-polyCpG MDNs. In ovariectomized mouse and rabbit models, Ca-polyCpG MDNs prevented bone resorption and promoted bone repair by restoring the osteoporotic microenvironment, providing valuable insights into osteoporosis therapy.


Assuntos
Reabsorção Óssea , Nanopartículas , Osteoporose , Camundongos , Animais , Coelhos , Osteoclastos/metabolismo , Osteogênese/genética , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Diferenciação Celular
4.
Sci Adv ; 8(31): eabo5285, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921425

RESUMO

Microwave ablation (MWA) as a local tumor ablation strategy suffers from posttreatment tumor recurrence. Development of adjuvant biomaterials to potentiate MWA is therefore of practical significance. Here, the high concentration of Ca2+ fixed by alginate as Ca2+-surplus alginate hydrogel shows enhanced heating efficiency and restricted heating zone under microwave exposure. The high concentration of extracellular Ca2+ synergizes with mild hyperthermia to induce immunogenic cell death by disrupting intracellular Ca2+ homeostasis. Resultantly, Ca2+-surplus alginate hydrogel plus MWA can ablate different tumors on both mice and rabbits at reduced operation powers. This treatment can also elicit antitumor immunity, especially if synergized with Mn2+, an activator of the stimulation of interferon genes pathway, to suppress the growth of both untreated distant tumors and rechallenged tumors. This work highlights that in situ-formed metallo-alginate hydrogel could act as microwave-susceptible and immunostimulatory biomaterial to reinforce the MWA therapy, promising for clinical translation.


Assuntos
Neoplasias Hepáticas , Micro-Ondas , Alginatos , Animais , Hidrogéis/farmacologia , Neoplasias Hepáticas/patologia , Camundongos , Micro-Ondas/uso terapêutico , Coelhos , Resultado do Tratamento
5.
J Mater Chem B ; 10(21): 4096-4104, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35521641

RESUMO

Development of an intelligent and versatile delivery system to achieve tumor-targeted delivery and controlled release of diverse functional moieties is of great significance to realize precise cancer theranostics. In this study, we use pH-dissociable calcium carbonate-polydopamine (pCaCO3) nanocomposites as a template to guide the formation of a lipid bilayer on their surface, yielding lipid-coated pCaCO3 nanoparticles with high loading efficacies towards gadolinium ions (Gd3+), doxorubicin (DOX) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR). The obtained liposomal nanotheranostics show excellent physiological stability and pH-dependent release of DOX and Gd3+; the latter could lead to pH-dependent T1 signal enhancement under magnetic resonance (MR) imaging, as well as efficient photothermal conversion efficacy. Then, we found that tumors in mice with intravenous injection of DiR-DOX-Gd@pCaCO3-PEG could be clearly visualized in a real-time manner by recording their near-infrared (NIR) fluorescence and T1 MR signal. Furthermore, treatment with such liposomal nanotheranostics injection and NIR laser irradiation could enable collective suppression of the growth of 4T1 tumors in Balb/c mice via combined chemo- and photothermal therapies. Therefore, this work highlights the concise preparation of lipid-coated pCaCO3 nanocomposites, which could be utilized for the construction of diverse cancer nanotheranostics by exploiting their versatile loading capacities.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Hipertermia Induzida/métodos , Lipídeos , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia/métodos
6.
Nat Commun ; 12(1): 4299, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262038

RESUMO

Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Nanomedicina/métodos , Neoplasias/terapia , Ablação por Radiofrequência , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/uso terapêutico , Catálise , Linhagem Celular Tumoral , Terapia Combinada , Ferroptose/efeitos dos fármacos , Hemina/química , Hemina/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoxigenase/química , Lipoxigenase/uso terapêutico , Camundongos , Metástase Neoplásica , Neoplasia Residual , Neoplasias/imunologia , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Coelhos
7.
J Nanobiotechnology ; 19(1): 80, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743720

RESUMO

BACKGROUND: The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as "self", evade the surveillance of the immune system, and accumulate to the tumor sites actively. RESULTS: Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate-an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. CONCLUSIONS: These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer.


Assuntos
Biomimética/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Nanomedicina/métodos , Terapia Fototérmica/métodos , Ácidos Polimetacrílicos/química , Animais , Compostos Férricos , Hipertermia Induzida , Verde de Indocianina , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas , Fototerapia/métodos
8.
Sci Adv ; 6(10): eaaz4204, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181368

RESUMO

Currently, there is a huge demand to develop chemoimmunotherapy with reduced systemic toxicity and potent efficacy to combat late-stage cancers with spreading metastases. Here, we report several "cocktail" therapeutic formulations by mixing immunogenic cell death (ICD)-inducing chemotherapeutics and immune adjuvants together with alginate (ALG) for localized chemoimmunotherapy. Immune checkpoint blockade (ICB) antibody may be either included into this cocktail for local injection or used via conventional intravenous injection. After injection of such cocktail into a solid tumor, in-situ gelation of ALG would lead to local retention and sustained release of therapeutics to reduce systemic toxicity. The chemotherapy-induced ICD with the help of immune adjuvant would trigger tumor-specific immune responses, which are further amplified by ICB to elicit potent systemic antitumor immune responses in destructing local tumors, eliminating metastases and inhibiting cancer recurrence. Our strategy of combining clinically used agents for tumor-localized cocktail chemoimmunotherapy possesses great potential for clinical translation.


Assuntos
Anticorpos Neutralizantes/farmacologia , Neoplasias do Colo/terapia , Terapia Combinada/métodos , Doxorrubicina/farmacologia , Neoplasias Mamárias Animais/terapia , Oxaliplatina/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Alginatos/química , Animais , Anticorpos Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Géis , Humanos , Imiquimode/administração & dosagem , Imunoterapia/métodos , Injeções Intralesionais , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
9.
Theranostics ; 10(1): 62-73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903106

RESUMO

Rationale: Nanoparticles (NPs) that are rapidly eliminated from the body offer great potential in clinical test. Renal excretion of small particles is preferable over other clearance pathways to minimize potential toxicity. Thus, there is a significant demand to prepare ultra-small theranostic agents with renal clearance behaviors. Method: In this work, we report a facile method to prepare NPs with ultra-small size that show renal clearable behavior for imaging-guided photodynamic therapy (PDT). Pyropheophorbide-a (Pa), a deep red photosensitizer was functionalized with polyethylene glycol (PEG) to obtain Pa-PEG. The prepared NPs formed ultra-small nanodots in aqueous solution and showed red-shifted absorbance that enabling efficient singlet oxygen generation upon light irradiation. Results: In vitro studies revealed good photodynamic therapy (PDT) effect of these Pa-PEG nanodots. Most of the cancer cells incubated with Pa-PEG nanodots were destroyed after being exposed to the irradiated light. Utilizing the optical properties of such Pa-PEG nanodots, in vivo photoacoustic (PA) and fluorescence (FL) imaging techniques were used to assess the optimal time for PDT treatment after intravenous (i.v.) injection of the nanodots. As monitored by the PA/FL dual-modal imaging, the nanodots could accumulate at the tumor site and reach the maximum concentration at 8 h post injection. Finally, the tumors on mice treated with Pa-PEG nanodots were effectively inhibited by PDT treatment. Moreover, Pa-PEG nanodots showed high PA/FL signals in kidneys implying these ultra-small nanodots could be excreted out of the body via renal clearance. Conclusion: We demonstrated the excellent properties of Pa-PEG nanodots that can be an in vivo imaging-guided PDT agent with renal clearable behavior for potential future clinical translation.


Assuntos
Neoplasias da Mama/terapia , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análogos & derivados , Nanopartículas , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Clorofila/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Técnicas Fotoacústicas , Nanomedicina Teranóstica
10.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5639-5644, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496101

RESUMO

To provide the ancient literary evidence support for the clinical application and development of classical prescription based on systematical collection and analysis of the ancient Chinese medical literature containing Jinshui Liujun Jian, including its origin and development. Bibliometric analysis was used and information of Jinshui Liujun Jian in ancient Chinese medical literature was then collected for statistical analysis of formula compositions, main indications, dosage, preparation methods, etc. A total of 151 valid items of data were obtained from 48 ancient Chinese medicine books. Jinshui Liujun Jian was first recorded in Jingyue Quanshu written by ZHANG Jiebin. This prescription consisted of Rehmanniae Radix Praeparata, Angelicae Sinensis Radix, Pinelliae Rhizome, Citri Reticulatae Pericarpium, Poria and Glycyrrhizae Radix et Rhizome Praeparata cum Melle, and it was mainly used to treat the deficiency of lung and kidney, edema and excess production of phlegm, or Yin deficiency in the old, insufficient blood-qi, wind-cold evil, cough and disgusting, asthma and excessive phlegm. Doctors in later dynasties mostly followed the prescription compositions, dosages and indications in Jingyue Quanshu, and extended the clinical application of this prescription.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Prescrições , Rizoma
11.
Biomaterials ; 228: 119568, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677393

RESUMO

A general therapeutic strategy to treat breast cancer is attractive as different subtypes of breast cancers often exhibit distinct response to existing cancer therapeutics. To this end, we prepare a catalyst couple of glucose oxidase (GOx) and gallic acid-ferrous (GA-Fe) nanocomplexes, a type of near-infrared (NIR) absorbing Fenton catalyst, to enable NIR-trigger in-situ gelation and enhanced chemodynamic/starvation therapy that appears to be effective for different types of breast cancer cells. In this system, GOx is mixed with GA-Fe in a solution of N,N-dimethylacrylamide (DMAA) and poly (ethylene glycol) double acrylate (PEGDA). Upon intratumoral injection and NIR laser exposure, such GA-Fe show rapid temperature increase, which would simultaneously increase the catalytic efficiencies of GA-Fe and GOx. The cascade production of hydroxyl radicals (•OH) from glucose is then initiated to enable polymerization of DMAA and PEGDA to form a hydrogel at the injection site within the tumor. The continuous production of cytotoxic •OH together with glucose depletion by the intratumorally fixed catalyst couple would further confer effective destruction of breast cancer tumors by such chemodynamic/starvation therapy. Our work presents a hydrogel-based therapeutic strategy for local treatment of solid tumors with high tumor destruction efficacy and low systemic toxicity.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias da Mama/tratamento farmacológico , Glucose , Glucose Oxidase , Humanos , Radical Hidroxila
12.
J Mater Chem B ; 7(34): 5170-5181, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31384859

RESUMO

Radiotherapy (RT) has been used clinically to overcome cancer in recent decades. However, the abnormal tumor microenvironment (TME), involving hypoxia, acidosis and a dense extracellular matrix, is found to be related to the resistance of tumors to RT. Herein, intelligent bovine serum albumin (BSA)-coated Bi2S3 and MnO2 (Bi2S3-MnO2) nanocomposites synthesized via biomineralization are capable of modulating the hypoxic TME effectively to enhance the efficacy of RT. After intravenous injection, the BSA-Bi2S3-MnO2 nanocomposites show efficient accumulation in tumors, where endogenous H2O2 can react with MnO2 to generate oxygen in situ, leading to increased tumor oxygenation to overcome the hypoxia-associated resistance to RT. Moreover, the photothermal effect induced by the BSA-Bi2S3-MnO2 nanocomposites further relieves hypoxia in the TME and, finally, synergistically improves the effects of RT. In this work, we present a simple strategy to fabricate intelligent therapeutic nanoparticles to improve therapeutic efficiency towards cervical cancer.


Assuntos
Bismuto/química , Compostos de Manganês/química , Nanocompostos/química , Imagem Óptica , Óxidos/química , Soroalbumina Bovina/química , Sulfetos/química , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia , Animais , Biomineralização , Bovinos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Tamanho da Partícula , Fototerapia , Propriedades de Superfície , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo
13.
Nano Lett ; 19(7): 4287-4296, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31132270

RESUMO

Magnetic hyperthermia (MHT) utilizing heat generated by magnetic nanoparticles under alternating magnetic field (AMF) is an effective local tumor ablation method but can hardly treat metastatic tumors. In this work, we discover that pure iron nanoparticles (FeNPs) with high magnetic saturation intensity after being modified by biocompatible polymers are stable in aqueous solution and could be employed as a supereffective MHT agent to generate sufficient heating under a low-power AFM. Effective MHT ablation of tumors is then achieved, using either locally injected FeNPs or intravenously injected FeNPs with the help of locally applied tumor-focused constant magnetic field to enhance the tumor accumulation of those nanoparticles. We further demonstrate that the combination of FeNP-based MHT with local injection of nanoadjuvant and systemic injection of anticytotoxic T-lymphocyte antigen-4 (anti-CTLA4) checkpoint blockade would result in systemic therapeutic responses to inhibit tumor metastasis. A robust immune memory effect to prevent tumor recurrence is also observed after the combined MHT-immunotherapy. This work not only highlights that FeNPs with appropriate surface modification could act as a supereffective MHT agent but also presents the great promises of combining MHT with immunotherapy to achieve long-lasting systemic therapeutic outcome after local treatment.


Assuntos
Hipertermia Induzida , Imunoterapia , Ferro , Magnetoterapia , Nanopartículas Metálicas , Neoplasias Experimentais , Animais , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Ferro/química , Ferro/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
14.
ACS Nano ; 13(1): 284-294, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30543399

RESUMO

Multifunctional nanoplatforms with special advantages in the diagnosis and treatment of cancer have been widely explored in nanomedicine. Herein, we synthesize two-dimensional core-shell nanocomposites (Ti3C2@Au) via a seed-growth method starting from the titanium carbide (Ti3C2) nanosheets, a classical type of MXene nanostructure. After growing gold on the surface of Ti3C2 nanosheets, the stability and biocompatibility of the nanocomposites are greatly improved by the thiol modification. Also importantly, the optical absorption in the near-infrared region is enhanced. Utilizing the ability of the high optical absorbance and strong X-ray attenuation, the synthesized Ti3C2@Au nanocomposites are used for photoacoustic and computed tomography dual-modal imaging. Importantly, the mild photothermal effect of the Ti3C2@Au nanocomposites could improve the tumor oxygenation, which significantly enhances the radiotherapy. No obvious long-term toxicity of the nanocomposites is found at the injected dose. This work highlights the promise of special properties of MXene-based multifunctional nanostructures for cancer theranostics.


Assuntos
Nanopartículas Metálicas/química , Imagem Multimodal/métodos , Nanocompostos/química , Neoplasias Experimentais/diagnóstico por imagem , Fototerapia/métodos , Radioterapia/métodos , Absorção de Radiação , Animais , Linhagem Celular Tumoral , Feminino , Ouro/química , Nanopartículas Metálicas/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Nanocompostos/efeitos da radiação , Neoplasias Experimentais/terapia , Técnicas Fotoacústicas/métodos , Tomografia por Emissão de Pósitrons/métodos , Titânio/química
15.
ACS Appl Mater Interfaces ; 10(1): 332-340, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29220162

RESUMO

Current mainstream cancer treatment methods have their limitations. New approaches are thus desired to assist our battle against cancer. Herein, multifunctional ultrasmall FeS2 nanodots with the size of 7 nm are synthesized by biomineralization and used for imaging-guided combined tumor therapy. Bovine serum albumin (BSA), which acts as the reaction template to induce the mineralization of FeS2 nanomaterials under alkaline conditions, could also be used as a drug delivery system for coupling photosensitive molecule such as Chlorin e6 (Ce6). Taking advantage of the near-infrared (NIR) absorbance and the high r2 relaxivity of the synthesized ultrasmall FeS2 nanodots, as well as the Ce6 fluorescence, in vivo trimodal imaging of optical/magnetic resonance/photoacoustics was carried out, showing efficient tumor accumulation of FeS2@BSA-Ce6 after intravenous injection. In vitro and in vivo photothermal and photodynamic therapy were then conducted for synergistic tumor therapy and did not cause any apparent toxicity to the treated animals. Our work thus provides a new kind of ultrasmall FeS2 multifunctional nanodot modified by albumin via a simple method, promising for combination phototherapy as well as cancer theranostics.


Assuntos
Nanoestruturas , Animais , Linhagem Celular Tumoral , Ferro , Fotoquimioterapia , Fototerapia , Soroalbumina Bovina , Sulfetos , Nanomedicina Teranóstica
16.
Angew Chem Int Ed Engl ; 56(42): 12991-12996, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28815905

RESUMO

Multifunctional biodegradable inorganic theranostic nano-agents are of great interest to the field of nanomedicine. Upon lipid modification, VS2 nanosheets could be converted into ultra-small VS2 nanodots encapsulated inside polyethylene glycol (PEG) modified lipid micelles. Owing to paramagnetism, high near-infrared (NIR) absorbance, and chelator-free 99m Tc4+ labeling of VS2 , such VS2 @lipid-PEG nanoparticles could be used for T1-weighted magnetic resonance (MR), photoacoustic (PA),and single photon emission computed tomography (SPECT) tri-modal imaging guided photothermal ablation of tumors. Importantly, along with the gradual degradation of VS2 , our VS2 @lipid-PEG nanoparticles exhibit effective body excretion without appreciable toxicity. The unique advantages of VS2 nanostructures with highly integrated functionalities and biodegradable behaviors mean they are promising for applications in cancer theranostics.


Assuntos
Antineoplásicos/química , Magnetismo , Nanoestruturas/química , Compostos de Vanádio/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Camundongos , Micelas , Imagem Multimodal , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Técnicas Fotoacústicas , Fototerapia , Polietilenoglicóis/química , Tecnécio/química , Distribuição Tecidual , Transplante Heterólogo
17.
Biomaterials ; 127: 13-24, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28279918

RESUMO

Current photodynamic therapy (PDT) is suffering from limited efficacy towards hypoxia tumors and severe post-treatment photo-toxicity such as light-induced skin damages. To make PDT more effective in cancer treatment while being patient-comfortable, herein, a hexylamine conjugated chlorin e6 (hCe6) as the photosensitizer together with a lipophilic near-infrared (NIR) dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) are co-encapsulated into polyethylene glycol (PEG) shelled liposomes. In the obtained DiR-hCe6-liposome, the photosensitizing effect of hCe6 is quenched by DiR via fluorescence resonance energy transfer (FRET). Interestingly, upon irradiation with a 785-nm NIR laser to photobleach DiR, both fluorescence and photodynamic effect of hCe6 in DiR-hCe6-liposome would be activated. Meanwhile, such NIR irradiation applied on tumors of mice with intravenous injection of DiR-hCe6-liposome could result in mild photothermal heating, which in turn would promote intra-tumor blood flow and relieve tumor hypoxia, contributing to the enhanced photodynamic tumor treatment. Importantly, compared to hCe6-loaded liposomes, DiR-hCe6-liposome without being activated by the 785-nm laser shows much lower skin photo-toxicity, demonstrating its great skin protection effect. This work demonstrates a promising yet simple strategy to prepare NIR-light-activatable photodynamic theranostics for synergistic cancer phototherapy, which is featured high specificity/efficacy in tumor treatment with minimal photo-toxicity towards the skin.


Assuntos
Raios Infravermelhos , Lipossomos/química , Neoplasias/terapia , Fototerapia , Porfirinas/química , Pele/efeitos da radiação , Animais , Morte Celular , Linhagem Celular Tumoral , Clorofilídeos , Endocitose , Feminino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Espectrofotometria Ultravioleta
18.
Theranostics ; 6(7): 1031-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27217836

RESUMO

Cancer combination therapy to treat tumors with different therapeutic approaches can efficiently improve treatment efficacy and reduce side effects. Herein, we develop a theranostic nano-platform based on polydopamine (PDA) nanoparticles, which then are exploited as a versatile carrier to allow simultaneous loading of indocyanine green (ICG), doxorubicin (DOX) and manganese ions (PDA-ICG-PEG/DOX(Mn)), to enable imaging-guided chemo & photothermal cancer therapy. In this system, ICG acts as a photothermal agent, which shows red-shifted near-infrared (NIR) absorbance and enhanced photostability compared with free ICG. DOX, a model chemotherapy drug, is then loaded onto the surface of PDA-ICG-PEG with high efficiency. With Mn(2+) ions intrinsically chelated, PDA-ICG-PEG/DOX(Mn) is able to offer contrast under T1-weighted magnetic resonance (MR) imaging. In a mouse tumor model, the MR imaging-guided combined chemo- & photothermal therapy achieves a remarkable synergistic therapeutic effect compared with the respective single treatment modality. This work demonstrates that PDA nanoparticles could serve as a versatile molecular loading platform for MR imaging guided combined chemo- & photothermal therapy with minimal side effects, showing great potential for cancer theranostics.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Verde de Indocianina/administração & dosagem , Indóis/administração & dosagem , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Oligoelementos/administração & dosagem , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Corantes/administração & dosagem , Terapia Combinada/métodos , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Quimioterapia Combinada , Xenoenxertos , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Manganês/administração & dosagem , Camundongos Endogâmicos BALB C , Fototerapia , Coloração e Rotulagem/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA