Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 74(3): 628-40, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18552122

RESUMO

Ethanol modulation of calcium- and voltage-gated potassium (slo1) channels alters neuronal excitability, cerebrovascular tone, brain function, and behavior, yet the mechanism of this modulation remains unknown. Using patch-clamp electrophysiology on recombinant BK(Ca) channels cloned from mouse brain and expressed in Xenopus laevis oocytes, we demonstrate that ethanol, even at concentrations maximally effective to modulate BK(Ca) channel function (100 mM), fails to gate the channel in absence of activating calcium. Moreover, ethanol does not modify intrinsic, voltage- or physiological magnesium-driven gating. The alcohol works as an adjuvant of calcium by selectively facilitating calcium-driven gating. This facilitation, however, renders differential ethanol effects on channel activity: potentiation at low (<10 microM) and inhibition at high (>10 microM) calcium, this dual pattern remaining largely unmodified by coexpression of brain slo1 channels with the neuronally abundant BK(Ca) channel beta(4) subunit. Calcium recognition by either of the slo1 high-affinity sensors (calcium bowl and RCK1 Asp362/Asp367) is required for ethanol to amplify channel activation by calcium. The Asp362/Asp367 site, however, is necessary and sufficient to sustain ethanol inhibition. This inhibition also results from ethanol facilitation of calcium action; in this case, ethanol favors channel dwelling in a calcium-driven, low-activity mode. The agonist-adjuvant mechanism that we advance from the calcium-ethanol interaction on slo1 might be applicable to data of ethanol action on a wide variety of ligand-gated channels.


Assuntos
Cálcio/farmacologia , Etanol/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cinética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Camundongos , Modelos Biológicos , Oócitos/efeitos dos fármacos , Estrutura Terciária de Proteína , Xenopus
2.
J Gen Physiol ; 132(1): 13-28, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18562499

RESUMO

Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP(2) activates BK channels independently of PIP(2) metabolites. PIP(2) enhances Ca(2+)-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP(2) acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP(2) (diC16). The PIP(2)-channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6-S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP(2)-induced activation is drastically potentiated by accessory beta(1) (but not beta(4)) channel subunits. Moreover, PIP(2) robustly activates BK channels in vascular myocytes, where beta(1) subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP(2) effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+beta(1) and PI4-kinaseIIalpha robustly activates BK channels, suggesting a role for endogenous PIP(2) in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP(2) antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP(2) levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP(2) directly activates vascular myocyte BK channels to control vascular tone.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Cálcio/farmacologia , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Artéria Cerebral Média/citologia , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiologia , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Ácido Okadáico/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/fisiologia , Fosfatidilinositol 4,5-Difosfato/análogos & derivados , Fosfatidilinositol 4,5-Difosfato/farmacologia , Fosfatos de Fosfatidilinositol/farmacologia , Fosfatidilinositóis/farmacologia , Polilisina/farmacologia , RNA Complementar/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Xenopus laevis
3.
Nat Neurosci ; 9(1): 41-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16341213

RESUMO

High-conductance, Ca(2+)-activated and voltage-gated (BK) channels set neuronal firing. They are almost universally activated by alcohol, leading to reduced neuronal excitability and neuropeptide release and to motor intoxication. However, several BK channels are inhibited by alcohol, and most other voltage-gated K(+) channels are refractory to drug action. BK channels are homotetramers (encoded by Slo1) that possess a unique transmembrane segment (S0), leading to a cytosolic S0-S1 loop. We identified Thr107 of bovine slo (bslo) in this loop as a critical residue that determines BK channel responses to alcohol. In addition, the activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the cell controlled channel activity and alcohol modulation. Incremental CaMKII-mediated phosphorylation of Thr107 in the BK tetramer progressively increased channel activity and gradually switched the channel alcohol responses from robust activation to inhibition. Thus, CaMKII phosphorylation of slo Thr107 works as a 'molecular dimmer switch' that could mediate tolerance to alcohol, a form of neuronal plasticity.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Treonina/metabolismo , Fosfatase Alcalina/química , Sequência de Aminoácidos , Animais , Benzilaminas/farmacologia , Bradicinina/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Eletrofisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Camundongos , Dados de Sequência Molecular , Mutagênese , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , RNA Complementar/biossíntese , RNA Complementar/genética , Sulfonamidas/farmacologia , Treonina/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA