Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0261821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35041689

RESUMO

The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV. As a primary high-throughput screen, we used a viral cytopathic effect (CPE) inhibition assay conducted in Vero cells that was optimized and miniaturized to a 1536-well format. Suitably active compounds identified from the primary screen were tested in a panel of orthogonal assays using recombinant Zika viruses, including a ZIKV Renilla luciferase reporter assay and a ZIKV mCherry reporter system. Compounds that were active in the wild-type ZIKV inhibition and ZIKV reporter assays were further evaluated for their inhibitory effects against other flaviviruses. Lastly, we demonstrated that wild-type ZIKV is able to infect a 3D-bioprinted outer-blood-retina barrier tissue model and disrupt its barrier function, as measured by electrical resistance. One of the identified compounds (3-Acetyl-13-deoxyphomenone, NCGC00380955) was able to prevent the pathological effects of the viral infection on this clinically relevant ZIKV infection model.


Assuntos
Antivirais/farmacologia , Modelos Biológicos , Impressão Tridimensional , Retina , Replicação Viral/efeitos dos fármacos , Infecção por Zika virus , Zika virus/fisiologia , Animais , Antivirais/química , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Retina/metabolismo , Retina/virologia , Células Vero , Replicação Viral/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo
2.
Sci Rep ; 11(1): 2121, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483532

RESUMO

The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.


Assuntos
Antimaláricos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Fígado/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Humanos , Fígado/parasitologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Tiadiazinas/química , Tiadiazinas/farmacologia
3.
Proc Natl Acad Sci U S A ; 117(49): 31365-31375, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229545

RESUMO

When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.


Assuntos
Antivirais/análise , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Inibidores de Proteases/análise , Inibidores de Proteases/farmacologia , Zika virus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Inteligência Artificial , Chlorocebus aethiops , Modelos Animais de Doenças , Imunocompetência , Concentração Inibidora 50 , Metaciclina/farmacologia , Camundongos Endogâmicos C57BL , Inibidores de Proteases/uso terapêutico , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas , Células Vero , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
4.
PLoS One ; 7(10): e47974, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110144

RESUMO

The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células HeLa , Humanos , Metanossulfonato de Metila/antagonistas & inibidores , Metanossulfonato de Metila/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
5.
PLoS One ; 7(10): e45032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056190

RESUMO

Human DNA polymerase kappa (pol κ) is a translesion synthesis (TLS) polymerase that catalyzes TLS past various minor groove lesions including N(2)-dG linked acrolein- and polycyclic aromatic hydrocarbon-derived adducts, as well as N(2)-dG DNA-DNA interstrand cross-links introduced by the chemotherapeutic agent mitomycin C. It also processes ultraviolet light-induced DNA lesions. Since pol κ TLS activity can reduce the cellular toxicity of chemotherapeutic agents and since gliomas overexpress pol κ, small molecule library screens targeting pol κ were conducted to initiate the first step in the development of new adjunct cancer therapeutics. A high-throughput, fluorescence-based DNA strand displacement assay was utilized to screen ∼16,000 bioactive compounds, and the 60 top hits were validated by primer extension assays using non-damaged DNAs. Candesartan cilexetil, manoalide, and MK-886 were selected as proof-of-principle compounds and further characterized for their specificity toward pol κ by primer extension assays using DNAs containing a site-specific acrolein-derived, ring-opened reduced form of γ-HOPdG. Furthermore, candesartan cilexetil could enhance ultraviolet light-induced cytotoxicity in xeroderma pigmentosum variant cells, suggesting its inhibitory effect against intracellular pol κ. In summary, this investigation represents the first high-throughput screening designed to identify inhibitors of pol κ, with the characterization of biochemical and biologically relevant endpoints as a consequence of pol κ inhibition. These approaches lay the foundation for the future discovery of compounds that can be applied to combination chemotherapy.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores da Síntese de Ácido Nucleico , Acroleína/metabolismo , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA/genética , DNA/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Indóis/farmacologia , Bibliotecas de Moléculas Pequenas , Terpenos/farmacologia , Tetrazóis/farmacologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA