Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Oral Investig ; 28(1): 119, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277034

RESUMO

OBJECTIVES: To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS: This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS: ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS: The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE: ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.


Assuntos
Antissépticos Bucais , Extratos Vegetais , Punica granatum , Desmineralização do Dente , Humanos , Cálcio/análise , Estudos Cross-Over , Esmalte Dentário , Fluoretos , Dureza , Antissépticos Bucais/química , Antissépticos Bucais/farmacologia , Fósforo , Polifosfatos , Desmineralização do Dente/prevenção & controle , Extratos Vegetais/farmacologia
2.
Gels ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38131928

RESUMO

Inflammation is a natural protective reaction of the body against endogenous and exogenous damage, such as tissue injuries, trauma, and infections. Thus, when the response is adequate, inflammation becomes a defense mechanism to repair damaged tissue, whereas when the response is inadequate and persistent, the increase in inflammatory cells, cytosines, and chymosins impair tissue regeneration and promote a response harmful to the organism. One example is chronic tissue inflammation, in which a simple lesion can progress to ulcers and even necrosis. In this situation, the anti-inflammatory medications available in therapy are not always effective. For this reason, the search for new treatments, developed from medicinal plants, has increased. In this direction, the plants Agave sisalana (sisal) and Punica granatum (pomegranate) are rich in saponins, which are secondary metabolites known for their therapeutic properties, including anti-inflammatory effects. Although Brazil is the world's leading sisal producer, approximately 95% of the leaves are discarded after fiber extraction. Similarly, pomegranate peel waste is abundant in Brazil. To address the need for safe and effective anti-inflammatory treatments, this study aimed to create a topical mucoadhesive gel containing a combination of sisal (RS) and pomegranate residue (PR) extracts. In vitro experiments examined isolated and combined extracts, as well as the resulting formulation, focusing on (1) a phytochemical analysis (total saponin content); (2) cytotoxicity (MTT assay); and (3) a pharmacological assessment of anti-inflammatory activity (phagocytosis, macrophage spreading, and membrane stability). The results revealed saponin concentrations in grams per 100 g of dry extract as follows: SR-29.91 ± 0.33, PR-15.83 ± 0.93, association (A)-22.99 ± 0.01, base gel (G1)-0.00 ± 0.00, and association gel (G2)-0.52 ± 0.05. In MTT tests for isolated extracts, cytotoxicity values (µg/mL) were 3757.00 for SR and 2064.91 for PR. Conversely, A and G2 exhibited no cytotoxicity, with increased cell viability over time. All three anti-inflammatory tests confirmed the presence of this activity in SR, PR, and A. Notably, G2 demonstrated an anti-inflammatory effect comparable to dexamethasone. In conclusion, the gel containing SR and PR (i.e., A) holds promise as a novel herbal anti-inflammatory treatment. Its development could yield economic, social, and environmental benefits by utilizing discarded materials in Brazil.

3.
Biomed Pharmacother ; 98: 873-885, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29571258

RESUMO

Brazilian Northeast is the world's largest producer of Agave sisalana Perrine for the supply of the sisal fiber. About 95% of plant biomass, which comprise the mucilage and sisal juice, is considered a waste residual is discarded in the soil. However, the sisal juice is rich in steroidal saponins, which exhibits different pharmacological properties. Despite this, natural products are not necessarily safe. Based on this, this study analyzed the antioxidant, cytotoxic and mutagenic potential of three extracts derived from acid hydrolysis (AHAS), dried precipitate (DPAS) and hexanic of A. sisalana (HAS). These analyses were performed by in vitro and in vivo methods, using Vero cells, human lymphocytes and mice. Results showed that AHAS 50 and 100 can be considered a useful antineoplastic candidate due to their antioxidant and cytotoxic activity, with no genotoxic/clastogenic potential in Vero cells and mice. Although the comet assay in human lymphocytes has showed that the AHAS 25, AHAS 50 and AHAS 100 can lead to DNA breaks, these extracts did not promote DNA damages in mice bone marrow. Considering the different mutagenic responses obtained with the different methods employed, this study suggest that the metabolizing pathways can produce by-products harmful to health. For this reason, it is mandatory to analyze the mutagenic potential by both in vitro and in vivo techniques, using cells derived from different species and origins.


Assuntos
Agave/química , Antioxidantes/farmacologia , Eritrócitos/metabolismo , Linfócitos/metabolismo , Mutagênese , Extratos Vegetais/farmacologia , Animais , Anexina A5/metabolismo , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Fluoresceínas/metabolismo , Histonas/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Folhas de Planta/química , Propídio/metabolismo , Saponinas/análise , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA