Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36755392

RESUMO

Availability of readily transformable germplasm, as well as efficient pipelines for gene discovery are notable bottlenecks in the application of genome editing in potato. To study and introduce traits such as resistance against biotic and abiotic factors, tuber quality traits and self-fertility, model germplasm that is amenable to gene editing and regeneration is needed. Cultivated potato is a heterozygous autotetraploid and its genetic redundancy and complexity makes studying gene function challenging. Genome editing is simpler at the diploid level, with fewer allelic variants to consider. A readily transformable diploid potato would be further complemented by genomic resources that could aid in high throughput functional analysis. The heterozygous Solanum tuberosum Group Phureja clone 1S1 has a high regeneration rate, self-fertility, desirable tuber traits and is amenable to Agrobacterium-mediated transformation. We leveraged its amenability to Agrobacterium-mediated transformation to create a Cas9 constitutively expressing line for use in viral vector-based gene editing. To create a contiguous genome assembly, a homozygous doubled monoploid of 1S1 (DM1S1) was sequenced using 44 Gbp of long reads generated from Oxford Nanopore Technologies (ONT), yielding a 736 Mb assembly that encoded 31,145 protein-coding genes. The final assembly for DM1S1 represents a nearly complete genic space, shown by the presence of 99.6% of the genes in the Benchmarking Universal Single Copy Orthologs (BUSCO) set. Variant analysis with Illumina reads from 1S1 was used to deduce its alternate haplotype. These genetic and genomic resources provide a toolkit for applications of genome editing in both basic and applied research of potato.


Assuntos
Solanum tuberosum , Solanum , Edição de Genes , Solanum tuberosum/genética , Diploide , Genoma de Planta , Solanum/genética
2.
Mol Plant ; 15(3): 520-536, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35026436

RESUMO

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts. As a clonally propagated autotetraploid that undergoes limited meiosis, dysfunctional and deleterious alleles are not purged in tetraploid potato. Nearly a quarter of the loci bore mutations are predicted to have a high negative impact on protein function, complicating breeder's efforts to reduce genetic load. The StCDF1 locus controls maturity, and analysis of six tetraploid genomes revealed that 12 allelic variants of StCDF1 are correlated with maturity in a dosage-dependent manner. Knowledge of the complexity of the tetraploid potato genome with its rampant structural variation and embedded deleterious and dysfunctional alleles will be key not only to implementing precision breeding of tetraploid cultivars but also to the construction of homozygous, diploid potato germplasm containing favorable alleles to capitalize on heterosis in F1 hybrids.


Assuntos
Solanum tuberosum , Tetraploidia , Alelos , Cromossomos , Melhoramento Vegetal , Proteoma/genética , Solanum tuberosum/genética , Transcriptoma/genética
3.
BMC Plant Biol ; 21(1): 507, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732129

RESUMO

BACKGROUND: Tuber shape and specific gravity (dry matter) are important agronomic traits in potato processing and impact production costs, quality, and consistency of the final processed food products such as French fries and potato chips. In this study, linkage and QTL mapping were performed for these two traits to allow for the implementation of marker-assisted selection to facilitate breeding efforts in the russet market class. Two parents, Rio Grande Russet (female) and Premier Russet (male) and their 205 F1 progenies were initially phenotyped for tuber shape and specific gravity in field trials conducted in Idaho and North Carolina in 2010 and 2011, with specific gravity also being measured in Minnesota in 2011. Progenies and parents were previously genotyped using the Illumina SolCAP Infinium 8303 Potato SNP array, with ClusterCall and MAPpoly (R-packages) subsequently used for autotetraploid SNP calling and linkage mapping in this study. The 12 complete linkage groups and phenotypic data were then imported into QTLpoly, an R-package designed for polyploid QTL analyses. RESULTS: Significant QTL for tuber shape were detected on chromosomes 4, 7, and 10, with heritability estimates ranging from 0.09 to 0.36. Significant tuber shape QTL on chromosomes 4 and 7 were specific to Idaho and North Carolina environments, respectively, whereas the QTL on chromosome 10 was significant regardless of growing environment. Single marker analyses identified alleles in the parents associated with QTL on chromosomes 4, 7, and 10 that contributed to significant differences in tuber shape among progenies. Significant QTL were also identified for specific gravity on chromosomes 1 and 5 with heritability ranging from 0.12 to 0.21 and were reflected across environments. CONCLUSION: Fully automated linkage mapping and QTL analysis were conducted to identify significant QTL for tuber shape and dry matter in a tetraploid mapping population representing the russet market class. The findings are important for the development of molecular markers useful to potato breeders for marker-assisted selection for the long tuber shape and acceptable dry matter required by the potato industry within this important market class.


Assuntos
Locos de Características Quantitativas/genética , Solanum tuberosum/genética , Cromossomos de Plantas/genética , Poliploidia , Tetraploidia
4.
Plant J ; 107(1): 77-99, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33860574

RESUMO

Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post​-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.


Assuntos
Lipídeos/biossíntese , Proteínas de Plantas/genética , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Regulação da Expressão Gênica de Plantas , Lipídeos/genética , Fenóis/metabolismo , Células Vegetais , Tubérculos/genética , Polimorfismo Genético , Solanum tuberosum/citologia , Solanum tuberosum/genética , Fatores de Transcrição/genética , Ceras/metabolismo
5.
Sci Rep ; 11(1): 8344, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863959

RESUMO

Knowledge regarding genetic diversity and population structure of breeding materials is essential for crop improvement. The Texas A&M University Potato Breeding Program has a collection of advanced clones selected and maintained in-vitro over a 40-year period. Little is known about its genetic makeup and usefulness for the current breeding program. In this study, 214 potato clones were genotyped with the Infinium Illumina 22 K V3 Potato Array. After filtering, a total of 10,106 single nucleotide polymorphic (SNP) markers were used for analysis. Heterozygosity varied by SNP, with an overall average of 0.59. Three groups of tetraploid clones primarily based on potato market classes, were detected using STRUCTURE software and confirmed by discriminant analysis of principal components. The highest coefficient of differentiation observed between the groups was 0.14. Signatures of selection were uncovered in genes controlling potato flesh and skin color, length of plant cycle and tuberization, and carbohydrate metabolism. A core set of 43 clones was obtained using Core Hunter 3 to develop a sub-collection that retains similar genetic diversity as the whole population, minimize redundancies, and facilitates long-term conservation of genetic resources. The comprehensive molecular characterization of our breeding clone bank collection contributes to understanding the genetic diversity of existing potato resources. This analysis could be applied to other breeding programs and assist in the selection of parents, fingerprinting, protection, and management of the breeding collections.


Assuntos
Células Clonais , Variação Genética/genética , Melhoramento Vegetal/métodos , Solanum tuberosum/genética , Metabolismo dos Carboidratos , Produção Agrícola , Genótipo , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Estados Unidos
6.
Transgenic Res ; 30(2): 169-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751337

RESUMO

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.


Assuntos
Produtos Agrícolas/genética , Inocuidade dos Alimentos/métodos , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , DNA de Plantas/genética , Marcadores Genéticos , Imunidade Inata , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
7.
Theor Appl Genet ; 133(9): 2583-2603, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32474611

RESUMO

KEY MESSAGE: A major QTL on chromosome 2 associated with leptine biosynthesis and Colorado potato beetle resistance was identified in a diploid S. chacoense F2 population using linkage mapping and bulk-segregant analysis. We examined the genetic features underlying leptine glycoalkaloid mediated Colorado potato beetle (Leptinotarsa decemlineata) host plant resistance in a diploid F2 mapping population of 233 individuals derived from Solanum chacoense lines USDA8380-1 and M6. The presence of foliar leptine glycoalkaloids in this population segregated as a single dominant gene and displayed continuous distribution of accumulated quantity in those individuals producing the compound. Using biparental linkage mapping, a major overlapping QTL region with partial dominance effects was identified on chromosome 2 explaining 49.3% and 34.1% of the variance in Colorado potato beetle field resistance and leptine accumulation, respectively. Association of this putative resistance region on chromosome 2 was further studied in an expanded F2 population in a subsequent field season. Loci significantly associated with leptine synthesis colocalized to chromosome 2. Significant correlation between increased leptine content and decreased Colorado potato beetle defoliation suggests a single QTL on chromosome 2. Additionally, a minor QTL with overdominance effects explaining 6.2% associated with Colorado potato beetle resistance donated by susceptible parent M6 was identified on chromosome 7. Bulk segregant whole genome sequencing of the same F2 population detected QTL associated with Colorado potato beetle resistance on chromosomes 2, 4, 6, 7, and 12. Weighted gene co-expression network analysis of parental lines and resistant and susceptible F2 individuals identified a tetratricopeptide repeat containing protein with a putative regulatory function and a previously uncharacterized acetyltransferase within the QTL region on chromosome 2, possibly under the control of a regulatory Tap46 subunit within the minor QTL on chromosome 12.


Assuntos
Mapeamento Cromossômico , Besouros , Herbivoria , Locos de Características Quantitativas , Solanum/genética , Animais , Cruzamentos Genéticos , Genótipo , Fenótipo , Folhas de Planta/química , Polimorfismo de Nucleotídeo Único , Alcaloides de Solanáceas/química , Solanum/química
8.
Plant Genome ; 12(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290929

RESUMO

Potato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato.


Assuntos
Cromossomos de Plantas , Diploide , Melhoramento Vegetal , Solanum tuberosum/genética , Translocação Genética , Tetraploidia
9.
Methods Mol Biol ; 1917: 183-201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610637

RESUMO

Cultivated potato, Solanum tuberosum Group Tuberosum L. (2n = 4x = 48) is a heterozygous tetraploid crop that is clonally propagated, thereby resulting in identical genotypes. Due to the lack of sexual reproduction and its concomitant segregation of alleles, genetic engineering is an efficient way of introducing crop improvement traits in potato. In recent years, genome-editing via the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system for targeted genome modifications has emerged as the most powerful method due to the ease in designing and construction of gene-specific single guide RNA (sgRNA) vectors. These sgRNA vectors are easily reprogrammable to direct Streptococcus pyogenes Cas9 (SpCas9) to generate double stranded breaks (DSBs) in the target genomes that are then repaired by the cell via the error-prone non-homologous end-joining (NHEJ) pathway or by precise homologous recombination (HR) pathway. CRISPR/Cas9 technology has been successfully implemented in potato for targeted mutagenesis to generate knockout mutations (by means of NHEJ) as well as gene targeting to edit an endogenous gene (by HR). In this chapter, we describe procedures for designing sgRNAs, protocols to clone sgRNAs for CRISPR/Cas9 constructs to generate knockouts, design of donor repair templates and use geminivirus replicons (GVRs) to facilitate gene-editing by HR in potato. We also describe tissue culture procedures in potato for Agrobacterium-mediated transformation to generate gene-edited events along with their molecular characterization.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Solanum tuberosum/genética , Agrobacterium/genética , RNA Guia de Cinetoplastídeos/genética , Técnicas de Cultura de Tecidos , Transformação Genética/genética
10.
PLoS One ; 13(11): e0206055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408049

RESUMO

Crop genetic engineering involves transformation in which transgenic plants are regenerated through tissue culture manipulations that can elicit somaclonal variation due to mutations, translocations, and/or epigenetic alterations. Here, we report on alterations in the transcriptome in a panel of transgenic potato plants engineered to be herbicide resistant. Using an inbred diploid potato clone (DMRH S5 28-5), ten single-insert transgenic lines derived from independent Agrobacterium-mediated transformation events were selected for herbicide resistance using an allelic variant of acetolactate synthase (mALS1). Expression abundances of the single-copy mALS1 transgene varied in individual transgenic lines was correlated with the level of phenotypic herbicide resistance, suggesting the importance of transgene expression in transgenic performance. Using RNA-sequencing, differentially expressed genes were identified with the proportion of genes up-regulated significantly higher than down-regulated genes in the panel, suggesting a differential impact of the plant transformation on gene expression activation compared to repression. Not only were transcription factors among the differentially expressed genes but specific transcription factor binding sites were also enriched in promoter regions of differentially expressed genes in transgenic lines, linking transcriptomic variation with specific transcription factor activity. Collectively, these results provide an improved understanding of transcriptomic variability caused by plant transformation.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Transcriptoma/genética , Transformação Genética , Transgenes/genética
11.
BMC Genet ; 19(1): 87, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241465

RESUMO

BACKGROUND: Genome-wide single nucleotide polymorphism (SNP) markers coupled with allele dosage information has emerged as a powerful tool for studying complex traits in cultivated autotetraploid potato (Solanum tuberosum L., 2n = 4× = 48). To date, this approach has been effectively applied to the identification of quantitative trait loci (QTLs) underlying highly heritable traits such as disease resistance, but largely unexplored for traits with complex patterns of inheritance. RESULTS: In this study, an F1 tetraploid russet mapping population (162 individuals) was evaluated for multiple quantitative traits over two years and two locations to identify QTLs associated with tuber sugar concentration, processing quality, vine maturity, and other high-value agronomic traits. We report the linkage maps for the 12 potato chromosomes and the QTL location with corresponding genetic models and candidate SNPs explaining the highest phenotypic variation for tuber quality and maturity related traits. Significant QTLs for tuber glucose concentration and tuber fry color were detected on chromosomes 4, 5, 6, 10, and 11. Collectively, these QTLs explained between 24 and 46% of the total phenotypic variation for tuber glucose and fry color, respectively. The QTL on chromosome 10 was associated with apoplastic invertases, with 'Premier Russet' contributing the favorable allele for fry processing quality. On chromosome 5, minor-effect QTLs for tuber glucose concentration and fry color co-localized with various major-effect QTLs, including vine maturity, growth habit, tuber shape, early blight (Altenaria tenuis), and Verticillium wilt (Verticillium spp.). CONCLUSIONS: Linkage analysis and QTL mapping in a russet mapping population (A05141) using SNP dosage information successfully identified favorable alleles and candidate SNPs for resistance to the accumulation of tuber reducing sugars. These novel markers have a high potential for the improvement of tuber processing quality. Moreover, the discovery of different genetic models for traits with overlapping QTLs at the maturity locus clearly suggests an independent genetic control.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/genética , Mapeamento Cromossômico , Ligação Genética , Estudo de Associação Genômica Ampla , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Tetraploidia
12.
Genome ; 61(7): 523-537, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29792822

RESUMO

Breeders rely on genetic integrity of material from genebanks; however, admixture, mislabeling, and errors in original data can occur and be detrimental. Two hundred and fifty accessions, representing paired samples consisting of original mother plants and their in vitro counterparts from the cultivated potato collection at the International Potato Center (CIP) were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity of the accessions and evaluate genetic diversity of the potato collection. Diploid, triploid, and tetraploid accessions were included, representing seven cultivated potato taxa (based on Hawkes, 1990). Fingerprints between voucher mother plants maintained in the field and in vitro clones of the same accession were used to evaluate identity, relatedness, and ancestry using hierarchal clustering and model-based Bayesian admixture analyses. Generally, in vitro and field clones of the same accession grouped together; however, 11 (4.4%) accessions were mismatches genetically, and in some cases the SNP data revealed the identity of the mixed accession. SNP genotypes were used to assess genetic diversity and to evaluate inter- and intraspecific relationships along with determining population structure and hybrid origins. Phylogenetic analyses suggest that the triploids included in this study are genetically similar. Further, some genetic redundancies among individual accessions were also identified along with some putative misclassified accessions. Accessions generally clustered together based on taxonomic classification and ploidy level with some deviations. STRUCTURE analysis identified six populations with significant gene flow among the populations, as well as revealed hybrid taxa and accessions. Overall, the Infinium 12K V2 Potato Array proved useful in confirming identity and highlighting the diversity in this subset of the CIP collection, providing new insights into the accessions evaluated. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality. For breeders and other users of these collections, confirmed identity is critical, as well as for quality management programs and to provide insights into the accessions evaluated.


Assuntos
Impressões Digitais de DNA/métodos , Variação Genética , Solanum tuberosum/genética , Teorema de Bayes , Bancos de Espécimes Biológicos , Diploide , Genótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/classificação , Especificidade da Espécie , Tetraploidia , Triploidia
13.
G3 (Bethesda) ; 8(7): 2471-2481, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29794167

RESUMO

Potato (Solanum tuberosum) is a staple food crop and is considered one of the main sources of carbohydrates worldwide. Late blight (Phytophthora infestans) and common scab (Streptomyces scabies) are two of the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value prediction in many major crops (e.g., maize and wheat). However, the technology has received little attention in potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately high genomic heritability estimates (0.46 ± 0.04 and 0.45 ± 0.017, for late blight and common scab, respectively). The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both traits, we found that more than 90% of the genetic variance could be captured with an additive model. For common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus located in a WRKY transcription factor for common scab.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Genômica , Doenças das Plantas/genética , Seleção Genética , Solanum tuberosum/genética , Tetraploidia , Algoritmos , Genômica/métodos , Genótipo , Modelos Genéticos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Solanum tuberosum/microbiologia , Streptomyces
14.
PLoS One ; 13(3): e0194398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29547652

RESUMO

The reported narrow genetic base of cultivated potato (Solanum tuberosum) can be expanded by the introgression of many related species with large genetic diversity. The analysis of the genetic structure of a potato population is important to broaden the genetic base of breeding programs by the identification of different genetic pools. A panel composed by 231 diverse genotypes was characterized using single nucleotide polymorphism (SNP) markers of the Illumina Infinium Potato SNP Array V2 to identify population structure and assess genetic diversity using discriminant analysis of principal components (DAPC) and pedigree analysis. Results revealed the presence of five clusters within the populations differentiated principally by ploidy, taxonomy, origin and breeding program. The information obtained in this work could be readily used as a guide for parental introduction in new breeding programs that want to maximize variability by combination of contrasting variability sources such as those presented here.


Assuntos
Análise Discriminante , Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal/métodos , Solanum tuberosum/genética , Tetraploidia , Análise por Conglomerados , Genética Populacional , Genótipo , Melhoramento Vegetal , Solanum tuberosum/classificação
15.
Genetics ; 209(1): 77-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514860

RESUMO

As one of the world's most important food crops, the potato (Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive (G), digenic dominant (D), and additive × additive epistatic (G#G) effects were calculated using 3895 markers, and the numerator relationship matrix (A) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm.


Assuntos
Alelos , Dosagem de Genes , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Poliploidia , Solanum tuberosum/genética , Algoritmos , Modelos Genéticos , Linhagem , Reprodutibilidade dos Testes , Seleção Genética
16.
Plant J ; 94(3): 562-570, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29405524

RESUMO

Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.


Assuntos
Alcaloides/metabolismo , Genoma de Planta/genética , Tubérculos/metabolismo , Solanum/genética , Diploide , Genes de Plantas/genética , Tubérculos/genética , Análise de Sequência de DNA , Solanum/anatomia & histologia , Solanum/metabolismo
17.
BMC Genet ; 19(1): 8, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29338687

RESUMO

BACKGROUND: Diversity in crops is fundamental for plant breeding efforts. An accurate assessment of genetic diversity, using molecular markers, such as single nucleotide polymorphism (SNP), must be able to reveal the structure of the population under study. A characterization of population structure using easy measurable phenotypic traits could be a preliminary and low-cost approach to elucidate the genetic structure of a population. A potato population of 183 genotypes was evaluated using 4859 high-quality SNPs and 19 phenotypic traits commonly recorded in potato breeding programs. A Bayesian approach, Minimum Spanning Tree (MST) and diversity estimator, as well as multivariate analysis based on phenotypic traits, were adopted to assess the population structure. RESULTS: Analysis based on molecular markers showed groups linked to the phylogenetic relationship among the germplasm as well as the link with the breeding program that provided the material. Diversity estimators consistently structured the population according to a priori group estimation. The phenotypic traits only discriminated main groups with contrasting characteristics, as different subspecies, ploidy level or membership in a breeding program, but were not able to discriminate within groups. A joint molecular and phenotypic characterization analysis discriminated groups based on phenotypic classification, taxonomic category, provenance source of genotypes and genetic background. CONCLUSIONS: This paper shows the significant level of diversity existing in a parental population of potato as well as the putative phylogenetic relationships among the genotypes. The use of easily measurable phenotypic traits among highly contrasting genotypes could be a reasonable approach to estimate population structure in the initial phases of a potato breeding program.


Assuntos
Cruzamento , Solanum tuberosum/genética , Teorema de Bayes , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
18.
Proc Natl Acad Sci U S A ; 114(46): E9999-E10008, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087343

RESUMO

Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid Stuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14-16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (Stuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato's maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly Smicrodontum in long-day-adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day-adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.


Assuntos
Evolução Biológica , Domesticação , Genes de Plantas/genética , Variação Genética , Tubérculos/genética , Solanum tuberosum/genética , Solanum/genética , Alelos , Metabolismo dos Carboidratos/genética , Ciclo Celular/genética , Cromossomos de Plantas , Ritmo Circadiano/genética , Diploide , Endorreduplicação/genética , Fertilidade/genética , Gametogênese/genética , Regulação da Expressão Gênica de Plantas , Pool Gênico , Genótipo , Haplótipos , Redes e Vias Metabólicas/genética , América do Norte , Peru , Fenótipo , Filogenia , Pólen/genética , Pólen/crescimento & desenvolvimento , Poliploidia , América do Sul , Especificidade da Espécie , Tetraploidia
19.
G3 (Bethesda) ; 7(11): 3587-3595, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28903982

RESUMO

Potato tuber necrotic ringspot disease (PTNRD) is a tuber deformity associated with infection by the tuber necrotic strain of Potato virus Y (PVYNTN). PTNRD negatively impacts tuber quality and marketability, and poses a serious threat to seed and commercial potato production worldwide. PVYNTN symptoms differ in the cultivars Waneta and Pike: Waneta expresses severe PTNRD and foliar mosaic with vein and leaf necrosis, whereas Pike does not express PTNRD and mosaic is the only foliar symptom. To map loci that influence tuber and foliar symptoms, 236 F1 progeny of a cross between Waneta and Pike were inoculated with PVYNTN isolate NY090029 and genotyped using 12,808 potato SNPs. Foliar symptom type and severity were monitored for 10 wk, while tubers were evaluated for PTNRD expression at harvest and again after 60 d in storage. Pairwise correlation analyses indicate a strong association between PTNRD and vein necrosis (τ = 0.4195). QTL analyses revealed major-effect QTL on chromosomes 4 and 5 for mosaic, 4 for PTNRD, and 5 for foliar necrosis symptoms. Locating QTL associated with PVY-related symptoms provides a foundation for breeders to develop markers that can be used to eliminate potato clones with undesirable phenotypes, e.g., those likely to develop PTNRD or to be symptomless carriers of PVY.


Assuntos
Ligação Genética , Loci Gênicos , Imunidade Vegetal/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Genes de Plantas , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/virologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Tetraploidia
20.
Plant J ; 92(4): 624-637, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869794

RESUMO

Relative to homozygous diploids, the presence of multiple homologs or homeologs in polyploids affords greater tolerance to mutations that can impact genome evolution. In this study, we describe sequence and structural variation in the genomes of six accessions of cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid and their impact on the transcriptome. Sequence diversity was high with a mean single nucleotide polymorphisms (SNP) rate of approximately 1 per 50 bases suggestive of high levels of allelic diversity. Additive gene expression was observed in leaves (3605 genes) and tubers (6156 genes) that contrasted the preferential allele expression of between 2180 and 3502 and 3367 and 5270 genes in the leaf and tuber transcriptome, respectively. Preferential allele expression was significantly associated with evolutionarily conserved genes suggesting selection of specific alleles of genes responsible for biological processes common to angiosperms during the breeding selection process. Copy number variation was rampant with between 16 098 and 18 921 genes in each cultivar exhibiting duplication or deletion. Copy number variable genes tended to be evolutionarily recent, lowly expressed, and enriched in genes that show increased expression in response to biotic and abiotic stress treatments suggestive of a role in adaptation. Gene copy number impacts on gene expression were detected with 528 genes having correlations between copy number and gene expression. Collectively, these data suggest that in addition to allelic variation of coding sequence, the heterogenous nature of the tetraploid potato genome contributes to a highly dynamic transcriptome impacted by allele preferential and copy number-dependent expression effects.


Assuntos
Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum/genética , Alelos , Diploide , Redes e Vias Metabólicas , Folhas de Planta/genética , Tubérculos/genética , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA