Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36755392

RESUMO

Availability of readily transformable germplasm, as well as efficient pipelines for gene discovery are notable bottlenecks in the application of genome editing in potato. To study and introduce traits such as resistance against biotic and abiotic factors, tuber quality traits and self-fertility, model germplasm that is amenable to gene editing and regeneration is needed. Cultivated potato is a heterozygous autotetraploid and its genetic redundancy and complexity makes studying gene function challenging. Genome editing is simpler at the diploid level, with fewer allelic variants to consider. A readily transformable diploid potato would be further complemented by genomic resources that could aid in high throughput functional analysis. The heterozygous Solanum tuberosum Group Phureja clone 1S1 has a high regeneration rate, self-fertility, desirable tuber traits and is amenable to Agrobacterium-mediated transformation. We leveraged its amenability to Agrobacterium-mediated transformation to create a Cas9 constitutively expressing line for use in viral vector-based gene editing. To create a contiguous genome assembly, a homozygous doubled monoploid of 1S1 (DM1S1) was sequenced using 44 Gbp of long reads generated from Oxford Nanopore Technologies (ONT), yielding a 736 Mb assembly that encoded 31,145 protein-coding genes. The final assembly for DM1S1 represents a nearly complete genic space, shown by the presence of 99.6% of the genes in the Benchmarking Universal Single Copy Orthologs (BUSCO) set. Variant analysis with Illumina reads from 1S1 was used to deduce its alternate haplotype. These genetic and genomic resources provide a toolkit for applications of genome editing in both basic and applied research of potato.


Assuntos
Solanum tuberosum , Solanum , Edição de Genes , Solanum tuberosum/genética , Diploide , Genoma de Planta , Solanum/genética
2.
Sci Rep ; 11(1): 8344, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863959

RESUMO

Knowledge regarding genetic diversity and population structure of breeding materials is essential for crop improvement. The Texas A&M University Potato Breeding Program has a collection of advanced clones selected and maintained in-vitro over a 40-year period. Little is known about its genetic makeup and usefulness for the current breeding program. In this study, 214 potato clones were genotyped with the Infinium Illumina 22 K V3 Potato Array. After filtering, a total of 10,106 single nucleotide polymorphic (SNP) markers were used for analysis. Heterozygosity varied by SNP, with an overall average of 0.59. Three groups of tetraploid clones primarily based on potato market classes, were detected using STRUCTURE software and confirmed by discriminant analysis of principal components. The highest coefficient of differentiation observed between the groups was 0.14. Signatures of selection were uncovered in genes controlling potato flesh and skin color, length of plant cycle and tuberization, and carbohydrate metabolism. A core set of 43 clones was obtained using Core Hunter 3 to develop a sub-collection that retains similar genetic diversity as the whole population, minimize redundancies, and facilitates long-term conservation of genetic resources. The comprehensive molecular characterization of our breeding clone bank collection contributes to understanding the genetic diversity of existing potato resources. This analysis could be applied to other breeding programs and assist in the selection of parents, fingerprinting, protection, and management of the breeding collections.


Assuntos
Células Clonais , Variação Genética/genética , Melhoramento Vegetal/métodos , Solanum tuberosum/genética , Metabolismo dos Carboidratos , Produção Agrícola , Genótipo , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Estados Unidos
3.
Transgenic Res ; 30(2): 169-183, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33751337

RESUMO

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.


Assuntos
Produtos Agrícolas/genética , Inocuidade dos Alimentos/métodos , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , DNA de Plantas/genética , Marcadores Genéticos , Imunidade Inata , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
4.
Plant Genome ; 12(2)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290929

RESUMO

Potato ( L.) breeders often use dihaploids, which are 2× progeny derived from 4× autotetraploid parents. Dihaploids can be used in diploid crosses to introduce new genetic material into breeding germplasm that can be integrated into tetraploid breeding through the use of unreduced gametes in 4× by 2× crosses. Dihaploid potatoes are usually produced via pollination by haploid inducer lines known as in vitro pollinators (IVP). In vitro pollinator chromosomes are selectively degraded from initially full hybrid embryos, resulting in 2× seed. During this process, somatic translocation of IVP DNA may occur. In this study, a genome-wide approach was used to identify such events and other chromosome-scale abnormalities in a population of 95 dihaploids derived from a cross between potato cultivar Superior and the haploid inducing line IVP101. Most Superior dihaploids showed translocation rates of <1% at 16,947,718 assayable sites, yet two dihaploids showed translocation rates of 1.86 and 1.60%. Allelic ratios at translocation sites suggested that most translocations occurred in individual cell lineages and were thus not present in all cells of the adult plants. Translocations were enriched in sites associated with high gene expression and H3K4 dimethylation and H4K5 acetylation, suggesting that they tend to occur in regions of open chromatin. The translocations likely result as a consequence of double-stranded break repair in the dihaploid genomes via homologous recombination during which IVP chromosomes are used as templates. Additionally, primary trisomy was observed in eight individuals. As the trisomic chromosomes were derived from Superior, meiotic nondisjunction may be common in potato.


Assuntos
Cromossomos de Plantas , Diploide , Melhoramento Vegetal , Solanum tuberosum/genética , Translocação Genética , Tetraploidia
5.
Methods Mol Biol ; 1917: 183-201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610637

RESUMO

Cultivated potato, Solanum tuberosum Group Tuberosum L. (2n = 4x = 48) is a heterozygous tetraploid crop that is clonally propagated, thereby resulting in identical genotypes. Due to the lack of sexual reproduction and its concomitant segregation of alleles, genetic engineering is an efficient way of introducing crop improvement traits in potato. In recent years, genome-editing via the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system for targeted genome modifications has emerged as the most powerful method due to the ease in designing and construction of gene-specific single guide RNA (sgRNA) vectors. These sgRNA vectors are easily reprogrammable to direct Streptococcus pyogenes Cas9 (SpCas9) to generate double stranded breaks (DSBs) in the target genomes that are then repaired by the cell via the error-prone non-homologous end-joining (NHEJ) pathway or by precise homologous recombination (HR) pathway. CRISPR/Cas9 technology has been successfully implemented in potato for targeted mutagenesis to generate knockout mutations (by means of NHEJ) as well as gene targeting to edit an endogenous gene (by HR). In this chapter, we describe procedures for designing sgRNAs, protocols to clone sgRNAs for CRISPR/Cas9 constructs to generate knockouts, design of donor repair templates and use geminivirus replicons (GVRs) to facilitate gene-editing by HR in potato. We also describe tissue culture procedures in potato for Agrobacterium-mediated transformation to generate gene-edited events along with their molecular characterization.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Solanum tuberosum/genética , Agrobacterium/genética , RNA Guia de Cinetoplastídeos/genética , Técnicas de Cultura de Tecidos , Transformação Genética/genética
6.
PLoS One ; 13(11): e0206055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408049

RESUMO

Crop genetic engineering involves transformation in which transgenic plants are regenerated through tissue culture manipulations that can elicit somaclonal variation due to mutations, translocations, and/or epigenetic alterations. Here, we report on alterations in the transcriptome in a panel of transgenic potato plants engineered to be herbicide resistant. Using an inbred diploid potato clone (DMRH S5 28-5), ten single-insert transgenic lines derived from independent Agrobacterium-mediated transformation events were selected for herbicide resistance using an allelic variant of acetolactate synthase (mALS1). Expression abundances of the single-copy mALS1 transgene varied in individual transgenic lines was correlated with the level of phenotypic herbicide resistance, suggesting the importance of transgene expression in transgenic performance. Using RNA-sequencing, differentially expressed genes were identified with the proportion of genes up-regulated significantly higher than down-regulated genes in the panel, suggesting a differential impact of the plant transformation on gene expression activation compared to repression. Not only were transcription factors among the differentially expressed genes but specific transcription factor binding sites were also enriched in promoter regions of differentially expressed genes in transgenic lines, linking transcriptomic variation with specific transcription factor activity. Collectively, these results provide an improved understanding of transcriptomic variability caused by plant transformation.


Assuntos
Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Transcriptoma/genética , Transformação Genética , Transgenes/genética
7.
BMC Genet ; 19(1): 87, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241465

RESUMO

BACKGROUND: Genome-wide single nucleotide polymorphism (SNP) markers coupled with allele dosage information has emerged as a powerful tool for studying complex traits in cultivated autotetraploid potato (Solanum tuberosum L., 2n = 4× = 48). To date, this approach has been effectively applied to the identification of quantitative trait loci (QTLs) underlying highly heritable traits such as disease resistance, but largely unexplored for traits with complex patterns of inheritance. RESULTS: In this study, an F1 tetraploid russet mapping population (162 individuals) was evaluated for multiple quantitative traits over two years and two locations to identify QTLs associated with tuber sugar concentration, processing quality, vine maturity, and other high-value agronomic traits. We report the linkage maps for the 12 potato chromosomes and the QTL location with corresponding genetic models and candidate SNPs explaining the highest phenotypic variation for tuber quality and maturity related traits. Significant QTLs for tuber glucose concentration and tuber fry color were detected on chromosomes 4, 5, 6, 10, and 11. Collectively, these QTLs explained between 24 and 46% of the total phenotypic variation for tuber glucose and fry color, respectively. The QTL on chromosome 10 was associated with apoplastic invertases, with 'Premier Russet' contributing the favorable allele for fry processing quality. On chromosome 5, minor-effect QTLs for tuber glucose concentration and fry color co-localized with various major-effect QTLs, including vine maturity, growth habit, tuber shape, early blight (Altenaria tenuis), and Verticillium wilt (Verticillium spp.). CONCLUSIONS: Linkage analysis and QTL mapping in a russet mapping population (A05141) using SNP dosage information successfully identified favorable alleles and candidate SNPs for resistance to the accumulation of tuber reducing sugars. These novel markers have a high potential for the improvement of tuber processing quality. Moreover, the discovery of different genetic models for traits with overlapping QTLs at the maturity locus clearly suggests an independent genetic control.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/genética , Mapeamento Cromossômico , Ligação Genética , Estudo de Associação Genômica Ampla , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Açúcares/metabolismo , Tetraploidia
8.
Genetics ; 209(1): 77-87, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514860

RESUMO

As one of the world's most important food crops, the potato (Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive (G), digenic dominant (D), and additive × additive epistatic (G#G) effects were calculated using 3895 markers, and the numerator relationship matrix (A) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm.


Assuntos
Alelos , Dosagem de Genes , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Poliploidia , Solanum tuberosum/genética , Algoritmos , Modelos Genéticos , Linhagem , Reprodutibilidade dos Testes , Seleção Genética
9.
Plant J ; 94(3): 562-570, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29405524

RESUMO

Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding.


Assuntos
Alcaloides/metabolismo , Genoma de Planta/genética , Tubérculos/metabolismo , Solanum/genética , Diploide , Genes de Plantas/genética , Tubérculos/genética , Análise de Sequência de DNA , Solanum/anatomia & histologia , Solanum/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(46): E9999-E10008, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087343

RESUMO

Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid Stuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14-16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (Stuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato's maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly Smicrodontum in long-day-adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day-adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.


Assuntos
Evolução Biológica , Domesticação , Genes de Plantas/genética , Variação Genética , Tubérculos/genética , Solanum tuberosum/genética , Solanum/genética , Alelos , Metabolismo dos Carboidratos/genética , Ciclo Celular/genética , Cromossomos de Plantas , Ritmo Circadiano/genética , Diploide , Endorreduplicação/genética , Fertilidade/genética , Gametogênese/genética , Regulação da Expressão Gênica de Plantas , Pool Gênico , Genótipo , Haplótipos , Redes e Vias Metabólicas/genética , América do Norte , Peru , Fenótipo , Filogenia , Pólen/genética , Pólen/crescimento & desenvolvimento , Poliploidia , América do Sul , Especificidade da Espécie , Tetraploidia
11.
Plant J ; 92(4): 624-637, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28869794

RESUMO

Relative to homozygous diploids, the presence of multiple homologs or homeologs in polyploids affords greater tolerance to mutations that can impact genome evolution. In this study, we describe sequence and structural variation in the genomes of six accessions of cultivated potato (Solanum tuberosum L.), a vegetatively propagated autotetraploid and their impact on the transcriptome. Sequence diversity was high with a mean single nucleotide polymorphisms (SNP) rate of approximately 1 per 50 bases suggestive of high levels of allelic diversity. Additive gene expression was observed in leaves (3605 genes) and tubers (6156 genes) that contrasted the preferential allele expression of between 2180 and 3502 and 3367 and 5270 genes in the leaf and tuber transcriptome, respectively. Preferential allele expression was significantly associated with evolutionarily conserved genes suggesting selection of specific alleles of genes responsible for biological processes common to angiosperms during the breeding selection process. Copy number variation was rampant with between 16 098 and 18 921 genes in each cultivar exhibiting duplication or deletion. Copy number variable genes tended to be evolutionarily recent, lowly expressed, and enriched in genes that show increased expression in response to biotic and abiotic stress treatments suggestive of a role in adaptation. Gene copy number impacts on gene expression were detected with 528 genes having correlations between copy number and gene expression. Collectively, these data suggest that in addition to allelic variation of coding sequence, the heterogenous nature of the tetraploid potato genome contributes to a highly dynamic transcriptome impacted by allele preferential and copy number-dependent expression effects.


Assuntos
Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum/genética , Alelos , Diploide , Redes e Vias Metabólicas , Folhas de Planta/genética , Tubérculos/genética , Tetraploidia
12.
Theor Appl Genet ; 130(4): 717-726, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28070610

RESUMO

KEY MESSAGE: New software to make tetraploid genotype calls from SNP array data was developed, which uses hierarchical clustering and multiple F1 populations to calibrate the relationship between signal intensity and allele dosage. SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, the relationship between signal intensity and allele dosage must be calibrated for each marker. We developed an improved computational method to automate this process, which is provided as the R package ClusterCall. In the training phase of the algorithm, hierarchical clustering within an F1 population is used to group samples with similar intensity values, and allele dosages are assigned to clusters based on expected segregation ratios. In the prediction phase, multiple F1 populations and the prediction set are clustered together, and the genotype for each cluster is the mode of the training set samples. A concordance metric, defined as the proportion of training set samples equal to the mode, can be used to eliminate unreliable markers and compare different algorithms. Across three potato families genotyped with an 8K SNP array, ClusterCall scored 5729 markers with at least 0.95 concordance (94.6% of its total), compared to 5325 with the software fitTetra (82.5% of its total). The three families were used to predict genotypes for 5218 SNPs in the SolCAP diversity panel, compared with 3521 SNPs in a previous study in which genotypes were called manually. One of the additional markers produced a significant association for vine maturity near a well-known causal locus on chromosome 5. In conclusion, when multiple F1 populations are available, ClusterCall is an efficient method for accurate, autotetraploid genotype calling that enables the use of SNP data for research and plant breeding.


Assuntos
Dosagem de Genes , Genótipo , Software , Solanum tuberosum/genética , Tetraploidia , Algoritmos , Alelos , Análise por Conglomerados , Polimorfismo de Nucleotídeo Único
13.
Plant Genome ; 9(3)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27902797

RESUMO

Within a population of F hybrids between two genotypes ( L. Group Phureja DM 1-3 516 R44 [DM] and L. Group Tuberosum RH89-039-16 [RH]) used in the potato genome sequencing project, we observed fruit set after self-pollination on many plants. Examination of pollen tube growth in self-fertile and self-unfruitful F plants after controlled self-pollinations revealed no difference in the ability of pollen tubes to reach the ovary. To identify genomic regions linked with self-fertility, we genotyped the F population using a genome-wide single-nucleotide polymorphism (SNP) array. Polymorphic and robust SNPs were analyzed to identify allelic states segregating with the self-fertile phenotype. All 88 highly significant SNPs occurred on chromosome 12. Seeds obtained after self-pollination of self-fertile individuals were used to advance the population for four generations. Genotyping 46 self-fruitful and 46 self-unfruitful S plants on the Infinium 8303 Potato SNP array revealed eight SNPs segregating with self-fertility on chromosomes 4, 9, 11, and 12. Three times more heterozygosity than expected was found in the S generation. Estimates of heterozygosity were influenced by copy number variation (CNV) in the potato genome leading to spurious heterozygous genotyping calls. Some spurious heterozygosity could be removed by application of a CNV filter developed from alignment of additional monoploid potato genomic sequence to the DM reference genome. The genes responsible for fruit set in self-fertile plants in the F generation were restricted to chromosome 12, whereas new genomic regions contributed to the ability of S plants to set fruit after self-pollination.


Assuntos
Genoma de Planta/genética , Solanum tuberosum/genética , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Diploide , Fertilidade/genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
14.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898814

RESUMO

Genome-wide association studies (GWAS) are widely used in diploid species to study complex traits in diversity and breeding populations, but GWAS software tailored to autopolyploids is lacking. The objectives of this research were to (i) develop an R package for autopolyploids based on the + mixed model, (ii) validate the software with simulated data, and (iii) analyze a diversity panel of tetraploid potatoes. A unique feature of the R package, called GWASpoly, is its ability to model different types of polyploid gene action, including additive, simplex dominant, and duplex dominant. Using a simulated tetraploid population, we confirmed our hypothesis that statistical power is higher when the assumed gene action in the GWAS model matches the gene action at unobserved quantitative trait loci (QTL). Thirteen traits were analyzed in the Solanaceae Coordinated Agricultural Project (SolCAP) potato diversity panel and, consistent with previous studies, significant QTL for tuber shape and eye depth co-localized on chromosome 10. For the other traits, only marginally significant QTL were detected, most likely due to insufficient statistical power: for simulated traits with a heritability () of 0.3, the median genome-wide power was only 0.01. Our results indicate that both marker density and population size were limiting factors for GWAS with the SolCAP panel.


Assuntos
Estudo de Associação Genômica Ampla , Software , Solanum tuberosum/genética , Mapeamento Cromossômico , Variação Genética , Fenótipo , Tubérculos/genética , Poliploidia , Locos de Características Quantitativas
15.
G3 (Bethesda) ; 6(8): 2617-28, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27342736

RESUMO

Genes associated with gametic and zygotic selection could underlie segregation distortion, observed as alterations of expected Mendelian genotypic frequencies in mapping populations. We studied highly dense genetic maps based on single nucleotide polymorphisms to elucidate the genetic nature of distorted segregation in potato. Three intra- and interspecific diploid segregating populations were used. DRH and D84 are crosses between the sequenced doubled monoploid DM 1-3 516 R44 Solanum tuberosum Group Phureja and either RH89-039-16 S. tuberosum or 84SD22, a S. tuberosum × S. chacoense hybrid. MSX902 is an interspecific cross between 84SD22 and Ber83 S. berthaultii × 2 × species mosaic. At the 0.05 significance level, 21%, 57%, and 51% of the total markers mapped in DRH, D84, and MSX902 exhibited distorted segregation, respectively. Segregation distortion regions for DRH were located on chromosomes 9 and 12; for D84 on chromosomes 2, 3, 4, 6, 7, and 8; and on chromosomes 1, 2, 7, 9, and 12 for MSX902. In general, each population had unique segregation distortion regions and directions of distortion. Interspecific crosses showed greater levels of distorted segregation and lower recombination rates as determined from the male parents. The different genomic regions where the segregation distortion regions occurred in the three populations likely reflect unique genetic combinations producing distorted segregation.


Assuntos
Mapeamento Cromossômico , Diploide , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/genética , Segregação de Cromossomos , Cromossomos de Plantas , Epistasia Genética , Genótipo , Meiose , Recombinação Genética , Autoincompatibilidade em Angiospermas/genética
16.
Plant Cell ; 28(2): 388-405, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26772996

RESUMO

Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways.


Assuntos
Variações do Número de Cópias de DNA/genética , Duplicação Gênica , Variação Genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Genótipo , Hibridização in Situ Fluorescente , Fenótipo , Filogenia , Reprodução Assexuada/genética , Solanum tuberosum/fisiologia , Especificidade da Espécie
17.
PLoS One ; 10(12): e0144591, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657719

RESUMO

Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration of CRISPR/Cas in potato extends the range of plant species modified using CRISPR/Cas and provides a framework for future studies.


Assuntos
Sistemas CRISPR-Cas , Genoma de Planta , Mutação , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Bases de Dados Genéticas , Marcação de Genes , Mutagênese Sítio-Dirigida
18.
G3 (Bethesda) ; 5(11): 2357-64, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374597

RESUMO

The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F1 progeny and parents of a cross (MSL603) between "Jacqueline Lee" and "MSG227-2" were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in "Jacqueline Lee." The best SNP marker mapped ~0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ~0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications.


Assuntos
Ligação Genética , Locos de Características Quantitativas , Solanum tuberosum/genética , Tetraploidia , Resistência à Doença/genética , Phytophthora infestans/patogenicidade , Polimorfismo de Nucleotídeo Único , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia
19.
Funct Integr Genomics ; 14(4): 789-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25270889

RESUMO

Perennial plants undergo repression of meristematic activity in a process called dormancy. Dormancy is a complex metabolic process with implications for plant breeding and crop yield. Endodormancy, a specific subclass of dormancy, is characteristic of internal physiological mechanisms resulting in growth suppression. In this study, we examine transcriptional changes associated with the natural cessation of endodormancy in potato tuber meristems and in endodormant tubers treated with the cytokinin analog 1-(α-ethylbenzyl)-3-niroguanidine (NG), which terminates dormancy. RNA-sequencing was used to examine transcriptome changes between endodormant and non-dormant meristems from four different harvest years. A total of 35,091 transcripts were detected with 2132 differentially expressed between endodormant and non-dormant tuber meristems. Endodormant potato tubers were treated with the synthetic cytokinin NG and transcriptome changes analyzed using RNA-seq after 1, 4, and 7 days following NG exposure. A comparison of natural cessation of dormancy and NG-treated tubers demonstrated that by 4 days after NG exposure, potato meristems exhibited transcriptional profiles similar to the non-dormant state with elevated expression of multiple histones, a variety of cyclins, and other genes associated with proliferation and cellular replication. Three homologues encoding for CYCD3 exhibited elevated expression in both non-dormant and NG-treated potato tissues. These results suggest that NG terminates dormancy and induces expression cell cycle-associated transcripts within 4 days of treatment.


Assuntos
Citocininas/farmacologia , Guanidinas/farmacologia , Nitrocompostos/farmacologia , Dormência de Plantas/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/genética , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/genética , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Tubérculos/efeitos dos fármacos , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Solanum tuberosum/citologia , Solanum tuberosum/efeitos dos fármacos , Fatores de Tempo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
20.
G3 (Bethesda) ; 3(11): 2031-47, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24062527

RESUMO

The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".


Assuntos
Mapeamento Cromossômico/normas , Cromossomos de Plantas/genética , Solanum tuberosum/genética , Biomarcadores/metabolismo , Cromossomos de Plantas/metabolismo , Genoma de Planta , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA