Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196352

RESUMO

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Assuntos
Lipídeos/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Poluição por Petróleo/efeitos adversos , Água do Mar/química , Água do Mar/microbiologia , Alcanivoraceae/genética , Alteromonadaceae/genética , Biodegradação Ambiental/efeitos dos fármacos , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Golfo do México , Hidrocarbonetos/metabolismo , Marinobacter/genética , Petróleo/metabolismo , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31757392

RESUMO

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Testes de Toxicidade , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA