Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0156254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27281327

RESUMO

The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.


Assuntos
Oomicetos/patogenicidade , Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Mapeamento Cromossômico , Ligação Genética , Genótipo , Imunidade Inata/genética , Fenótipo , Phytophthora infestans/parasitologia , Doenças das Plantas/genética , Locos de Características Quantitativas
2.
Theor Appl Genet ; 126(4): 1039-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23299900

RESUMO

Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.


Assuntos
Cruzamento/métodos , Marcadores Genéticos/genética , Fenótipo , Tubérculos/crescimento & desenvolvimento , Seleção Genética , Solanum tuberosum/genética , Análise de Variância , Cruzamentos Genéticos , Estudos de Associação Genética , Genótipo , Alemanha , Glucose-1-Fosfato Adenililtransferase/genética , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Solanum tuberosum/crescimento & desenvolvimento , Estatísticas não Paramétricas
3.
Plant Cell Environ ; 35(12): 2143-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22621197

RESUMO

Biochemical, molecular and genetic studies emphasize the role of the potato vacuolar invertase Pain-1 in the accumulation of reducing sugars in potato tubers upon cold storage, and thereby its influence on the quality of potato chips and French fries. Previous studies showed that natural Pain-1 cDNA alleles were associated with better chip quality and higher tuber starch content. In this study, we focused on the functional characterization of these alleles. A genotype-dependent transient increase of total Pain-1 transcript levels in cold-stored tubers of six different genotypes as well as allele-specific expression patterns were detected. 3D modelling revealed putative structural differences between allelic Pain-1 proteins at the molecule's surface and at the substrate binding site. Furthermore, the yeast SUC2 mutant was complemented with Pain-1 cDNA alleles and enzymatic parameters of the heterologous expressed proteins were measured at 30 and 4 °C. Significant differences between the alleles were detected. The observed functional differences between Pain-1 alleles did not permit final conclusions on the mechanism of their association with tuber quality traits. Our results show that natural allelic variation at the functional level is present in potato, and that the heterozygous genetic background influences the manifestation of this variation.


Assuntos
Alelos , Solanum tuberosum/enzimologia , beta-Frutofuranosidase/genética , Sequência de Bases , Primers do DNA , DNA Complementar , Genótipo , Modelos Moleculares , Reação em Cadeia da Polimerase , Conformação Proteica , RNA Mensageiro/genética , beta-Frutofuranosidase/química
4.
BMC Plant Biol ; 10: 271, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21143910

RESUMO

BACKGROUND: Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. RESULTS: For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. CONCLUSIONS: Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs.


Assuntos
Variação Genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , beta-Frutofuranosidase/genética , Alelos , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Biblioteca Genômica , Genótipo , Haplótipos , Isoenzimas/genética , Dados de Sequência Molecular , Família Multigênica , Fenótipo , Filogenia , Proteínas de Plantas/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Solanum tuberosum/enzimologia , beta-Frutofuranosidase/classificação
5.
Theor Appl Genet ; 116(8): 1167-81, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18379755

RESUMO

Complex characters of plants such as starch and sugar content of seeds, fruits, tubers and roots are controlled by multiple genetic and environmental factors. Understanding their molecular basis will facilitate diagnosis and combination of superior alleles in crop improvement programs ("precision breeding"). Association genetics based on candidate genes is one approach toward this goal. Tetraploid potato varieties and breeding clones related by descent were evaluated for 2 years for chip quality before and after cold storage, tuber starch content, yield and starch yield. Chip quality is inversely correlated with tuber sugar content. A total of 36 loci on 11 potato chromosomes were evaluated for natural DNA variation in 243 individuals. These loci included microsatellites and genes coding for enzymes that function in carbohydrate metabolism or transport (candidate loci). The markers were used to analyze population structure and were tested for association with the tuber quality traits. Highly significant and robust associations of markers with 1-4 traits were identified. Most frequent were associations with chip quality and tuber starch content. Alleles increasing tuber starch content improved chip quality and vice versa. With two exceptions, the most significant and robust associations (q < 0.01) were observed with DNA variants in genes encoding enzymes that function in starch and sugar metabolism or transport. Comparing linkage and linkage disequilibrium between loci provided evidence for the existence of large haplotype blocks in the breeding materials analyzed.


Assuntos
Variação Genética , Pigmentação/genética , Tubérculos/genética , Solanum tuberosum/genética , Amido/genética , Alelos , Mapeamento Cromossômico , DNA de Plantas/genética , DNA de Plantas/metabolismo , Genes de Plantas , Fenótipo , Tubérculos/metabolismo , Locos de Características Quantitativas , Solanum tuberosum/metabolismo , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA