Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 92(11): 5063-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25349354

RESUMO

Cattle consuming low-quality forages (LQF) require protein supplementation to increase forage utilization via ruminal fermentation. Biofuel production from algal biomass results in large quantities of postextraction algal residue (PEAR), which has the potential to elicit LQF utilization responses similar to cottonseed meal (CSM); however, its effect on ruminal bacterial communities is unknown. Five ruminally and duodenally cannulated Angus steers in a 5 × 5 Latin square had ad libitum access to oat straw diets. Treatments were infused ruminally and consisted of an unsupplemented control; PEAR at 50, 100, and 150 mg N/kg BW; and CSM at 100 mg N/kg BW. Ruminal samples were collected 4 h after supplementation on d 14 of each period and separated into solid and liquid fractions. Each sample was extracted for genomic DNA, PCR amplified for the V4 to V6 region of the 16S rRNA, sequenced on the 454 Roche pyrosequencing platform, and analyzed using the QIIME pipeline. Weighted UniFrac analysis and Morisita-Horn index demonstrated different community composition between liquid and solid fractions. Measures of richness including observed operational taxonomic units (OTU) and abundance coverage estimator metric decreased with greater PEAR provision (P ≤ 0.09). There were 42 core microbiome OTU observed in all solid fraction samples while the liquid fraction samples contained 30 core OTU. Bacteroidetes was the predominant phylum followed by Firmicutes in both fractions, which together characterized more than 90% of sequences. Relative abundance of Firmicutes increased with PEAR supplementation in the liquid fraction (linear, P = 0.02). Among Firmicutes, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae families increased in the liquid fraction with greater PEAR supplementation (linear, P ≤ 0.03). Prevotella represented over 25% of sequences in all treatments, and relative abundance decreased in the solid fraction with increasing PEAR provision (linear, P = 0.01). Fibrobacter and Treponema decreased in the liquid fraction with increasing PEAR (linear, P < 0.10). Results suggest PEAR supplementation increased forage utilization by increasing members of Firmicutes within the liquid fraction of the rumen microbiome.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Rúmen/microbiologia , Animais , Bovinos/microbiologia , Suplementos Nutricionais , Fermentação , Fibrobacter , Masculino , Reação em Cadeia da Polimerase
2.
J Anim Sci ; 92(10): 4642-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25085404

RESUMO

Algal biomass has been identified as a third-generation biofuel. Significant quantities of the coproduct postextraction algal residue (PEAR) remain after lipid extraction. After extraction, PEAR is concentrated in protein (17.9% CP on a DM basis and 32.5% CP on an ash-free basis), suggesting it may be an alternative to cottonseed meal (CSM) as a protein supplement. Our objectives were to determine the optimal level of PEAR supplementation to steers consuming straw and to compare the effects of PEAR supplementation on straw utilization and N metabolism with an isonitrogenous level of CSM. Five steers (198.2 ± 6.1 kg of BW), in a 5 × 5 Latin square, had ad libitum access to oat straw (80% NDF and 4.5% CP on a DM basis). Treatments were infused ruminally once daily and included no supplemental protein (CON); PEAR at 50, 100, and 150 mg N/kg BW; and CSM at 100 mg N/kg BW. Provision of PEAR increased total digestible OM intake (TDOMI) quadratically (P = 0.01) from 0.9 (CON) to 1.6 kg/d (100 mg N/kg BW of PEAR). Organic matter digestibility (OMD) increased quadratically (P < 0.01) with supplementation and was maximized (55% OMD) at 50 mg N/kg BW of PEAR. At isonitrogenous levels of PEAR and CSM, TDOMI was similar (P = 0.13) as was OMD (P = 0.50). Negative N balance was observed for all treatments except PEAR provided at 100 or 150 mg of N/kg BW. Nitrogen balance was quadratic (P < 0.01) with the greatest retention (1.84 g N/d) occurring at 100 mg N/kg BW of PEAR. There were no differences (P ≥ 0.22) between isonitrogenous PEAR and CSM supplementation in measurements of ruminal ammonia or VFA concentrations. Straw utilization was maximized when PEAR was provided at 100 mg N/kg BW. Our observations suggest cattle provided PEAR utilize straw in a manner similar to those supplemented CSM, indicating PEAR has potential to substitute for CSM as a protein supplement in forage-based operations.


Assuntos
Ração Animal/análise , Avena/química , Chlorella/química , Suplementos Nutricionais/análise , Digestão/fisiologia , Amônia/metabolismo , Animais , Bovinos , Ingestão de Alimentos/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA