Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117867, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38342155

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cang-ai volatile oil (CAVO) is an aromatic Chinese medicine with potent antibacterial and immune regulatory properties. While CAVO has been used to treat upper respiratory tract infections, depression, otomycosis, and bacterial infections in the skin, its effect on psoriasis is unknown. AIM OF THE STUDY: This study explores the effect and mechanism of CAVO in psoriasis intervention. MATERIAL AND METHODS: The effect of CAVO on the expression of IL-6 and IL-1ß was assessed in TNF-α-induced HaCaT cells using enzyme-linked immunosorbent assay (ELISA). Mice were given imiquimod (IMQ) and administered orally with different CAVO doses (0.03 and 0.06 g/kg) for 5 days. The levels of inflammatory cytokines related to group-3 innate lymphoid cells (ILC3s) in the skin were assessed using hematoxylin and eosin (H&E) staining, ELISA, and western blotting (WB). The frequency of ILC3s in mice splenocytes and skin cells was evaluated using flow cytometry. RESULTS: The results demonstrated that CAVO decreased the expression of IL-6 and IL-1ß in TNF-α- induced HaCaT cells. CAVO significantly reduced the severity of psoriatic symptoms in IMQ-induced mice. The expression of inflammatory cytokines in the skin, such as IL-1ß, IL-6, IL-8, IL-22, IL-23, and IL-17 A were decreased, whereas IL-10 levels were increased. The mRNA expressions of TNF-α, IL-23 A, IL-23 R, IL-22, IL-17 A, and RORγt were down-regulated in skin tissues. CAVO also decreased the levels of NF-κB, STAT3, and JAK2 proteins. CONCLUSIONS: CAVO potentially inhibits ILC3s activation to relieve IMQ-induced psoriasis in mice. These effects might be attributed to inhibiting the activation of NF-κB, STAT3, and JAK2 signaling pathways.


Assuntos
Interleucina-17 , Psoríase , Animais , Camundongos , Imiquimode , Interleucina-17/genética , Interleucina-17/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade Inata , Interleucina-6/metabolismo , Linfócitos/metabolismo , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Citocinas/metabolismo , Interleucina-23/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
2.
J Ethnopharmacol ; 305: 116145, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36623753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tylophora yunnanensis Schltr (TYS) is widely distributed in Yunnan, Guizhou, and other places in China. It is commonly used by folks to treat hepatitis and other liver-related diseases; however, its mechanism of action is still unclear. AIM OF THE STUDY: This study aimed to determine the effects of TYS on regulating gut microbiota and its metabolites in non-alcoholic steatohepatitis (NASH) rats by inhibiting the activation of NOD-like receptor protein3 (NLRP3). MATERIAL AND METHODS: An HFD-induced rat model was established to investigate if the intragastric administration of TYS could mediate gut microbiota and their metabolites to ultimately improve the symptoms of NASH. The improving effects of TYS on NASH rats were assessed by measuring their body weight, lipid levels, histopathology, and inflammatory factor levels in the rat models. The regulatory effects of TYS on NLRP3 in the NASH rats were analyzed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), which determined the levels of NLRP3-related factors. The changes in the composition of the gut microbiota of NASH rats were analyzed using 16S rRNA gene sequencing technology. Meanwhile, the Ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for the non-targeted analysis of metabolites in the cecum contents. RESULTS: The results showed that TYS could improve NASH by decreasing the body weight and levels of lipid, AST, ALT, LPS, FFA, VLDL, IL-1ß, IL-6, TNF-α, TGF-ß, NLRP3, ASC, and Caspase-1 in the NASH rats. The analysis of gut microbiota showed that TYS could improve the diversity and abundance of gut microbiota and alter their composition by decreasing the Firmicutes/Bacteroidetes (F/B) ratio and relative abundances of Lachnospiraceae, Christensenellaceae, Blautia, etc. while increasing those of Muribaculaceae, Rumiaococcus, Ruminococcaceae, etc. The analysis of metabolites in the cecum contents suggested that the arachidonic acid metabolism, bile secretion, serotonergic synapse, Fc epsilon RI signaling pathway, etc. were regulated by TYS. The metabolites enriched in these pathways mainly included chenodeoxycholic acid, prostaglandin D2, TXB2, 9-OxoODE, and 13(S)-HOTrE. CONCLUSIONS: These findings suggested that TYS could alleviate the NASH symptoms by decreasing the body weight, regulating the lipid levels, reducing the inflammatory response, and inhibiting the expression levels of NLRP3, ASC, and Caspase-1 in the NASH rats. The changes in the composition of gut microbiota and their metabolic disorder were closely related to the activation of NLRP3. TYS could significantly inhibit the activation of NLRP3 and regulate the composition of gut microbiota and the disorder of metabolites during NASH modeling.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Ratos , Peso Corporal , Caspase 1/metabolismo , China , Cromatografia Líquida , Lipídeos/farmacologia , Fígado/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/metabolismo , Espectrometria de Massas em Tandem , Tylophora/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA