Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Xenobiotica ; 49(11): 1260-1268, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30486721

RESUMO

1. Schisandra chinensis, also called wuweizi in Chinese, is the fruit of Schisandra chinensis (Turcz.) Baill., and has been officially utilized as an astringent tonic for more than two thousand years in China. This study aims to evaluate the inhibition of carboxylesterases (CESs) by the major ingredients isolated from Schisandra chinensis, including Anwuligan, Schisandrol B, Schisanhenol, deoxyschizandrin, and Schisandrin B. 2. In vitro human liver microsomes (HLMs)-catalyzed hydrolysis of 2-(2-Benzoyl-3-methoxyphenyl) benzothiazole (BMBT) and fluorescein diacetate (FD) was employed as the probe reaction for CES1 and CES2, respectively. Initial screening, inhibition kinetics determination (inhibition type and parameters (Ki)), and in silico docking method were carried out. 3. Schisandrin B showed strong inhibition on the activity of CES1, and the activity of CES2 was strongly inhibited by Anwuligan and Schisandrin B. Schisandrin B exhibited noncompetitive inhibition towards CES1 and CES2. Anwuligan showed competitive inhibition towards CES2. The inhibition kinetic parameters (Ki) were calculated to be 29.8, 0.6, and 8.1 uM for the inhibition of Schisandrin B on CES1, Anwuligan on CES2, and Schisandrin B on CES2. In silico docking showed that hydrogen bonds and hydrophobic interactions contributed to the inhibition of Schisandrin B on CES1, Anwuligan on CES2, and Schisandrin B on CES2. All these information will be helpful for understanding the adverse effects of Schisandra chinensis due to the inhibition of CESs-catalyzed metabolism.


Assuntos
Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Schisandra/química , Carboxilesterase/química , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Ciclo-Octanos/farmacologia , Dioxóis/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Inibidores Enzimáticos/química , Humanos , Lignanas/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia
2.
Xenobiotica ; 48(5): 452-458, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28548030

RESUMO

1. Everolimus is an inhibitor of mammalian target of rapamycin (mTOR) and has been clinically utilized to prevent the rejection of organ transplants. This study aims to determine the inhibition of everolimus on the activity of phase-II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs). 2. The results showed that 100 µM of everolimus exerted more than 80% inhibition toward UGT1A1, UGT-1A3 and UGT-2B7. UGT1A3 and UGT2B7 were selected to elucidate the inhibition mechanism, and in silico docking showed that hydrogen bonds and hydrophobic interactions mainly contributed to the strong binding of everolimus toward the activity cavity of UGT1A3 and UGT2B7. Inhibition kinetic-type analysis using Lineweaver-Burk plot showed competitive inhibition toward all these UGT isoforms. The inhibition kinetic parameters (Ki) were calculated to be 2.3, 0.07 and 4.4 µM for the inhibition of everolimus toward UGT1A1, UGT-1A3 and UGT-2B7, respectively. 3. In vitro-in vivo extrapolation (IVIVE) showed that [I]/Ki value was calculated to be 0.004, 0.14 and 0.002 for UGT1A1, UGT-1A3 and UGT-2B7, respectively. Therefore, high DDI potential existed between everolimus and clinical drugs mainly undergoing UGT1A3-catalyzed glucuronidation.


Assuntos
Inibidores Enzimáticos/farmacologia , Everolimo/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Glucuronosiltransferase/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Isoformas de Proteínas/metabolismo
3.
Molecules ; 22(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28621744

RESUMO

Mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera Indica L., has been investigated extensively because of its remarkable pharmacological effects. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to investigate the inhibition of mangiferin and aglycone norathyriol towards various isoforms of UGTs in our study, which evaluated the inhibitory capacity of MGF and its aglycone norathyriol (NTR) towards UDP-glucuronosyltransferase (UGT) isoforms. Initial screening experiment showed that deglycosylation of MGF into NTR strongly increased the inhibitory effects towards almost all the tested UGT isoforms at a concentration of 100 µM. Kinetic experiments were performed to further characterize the inhibition of UGT1A3, UGT1A7 and UGT1A9 by NTR. NTR competitively inhibited UGT1A3, UGT1A7 and UGT1A9, with an IC50 value of 8.2, 4.4, and 12.3 µM, and a Ki value of 1.6, 2.0, and 2.8 µM, respectively. In silico docking showed that only NTR could dock into the activity cavity of UGT1A3, UGT1A7 and UGT1A9. The binding free energy of NTR to UGT1A3, 1A7, 1A9 were -7.4, -7.9 and -4.0 kcal/mol, respectively. Based on the inhibition evaluation standard ([I]/Ki < 0.1, low possibility; 0.1 < [I]/Ki < 1, medium possibility; [I]/Ki > 1, high possibility), an in vivo herb-drug interaction between MGF/NTR and drugs mainly undergoing UGT1A3-, UGT1A7- or UGT1A9-catalyzed metabolism might occur when the plasma concentration of NTR is above 1.6, 2.0 and 2.8 µM, respectively.


Assuntos
Glucuronosiltransferase/metabolismo , Isoenzimas/metabolismo , Xantonas/química , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoenzimas/antagonistas & inibidores , Xantenos/química
4.
Molecules ; 21(12)2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916843

RESUMO

As one of the main active ingredients from Radix Astragali (RA), orally dosed astragaloside IV (AST) is easily transformed to sapogenin-cycloastragenol (CAG) by deglycosylation in the gastrointestinal tract. Because the potential adverse effects of AST and CAG remain unclear, the present study in this article was carried out to investigate the inhibition effects of AST and CAG on UDP-glucuronosyltransferases (UGTs) to explore potential clinical toxicity. An in vitro UGTs incubation mixture was employed to study the inhibition of AST and CAG towards UGT isoforms. Concentrations of 100 µM for each compound were used to initially screen the inhibitory efficiency. Deglycosylation of AST to CAG could strongly increase the inhibitory effects towards almost all of the tested UGT isoforms, with an IC50 of 0.84 µM and 11.28 µM for UGT1A8 and UGT2B7, respectively. Ulteriorly, the inhibition type and kinetics of CAG towards UGT1A8 and UGT2B7 were evaluated depending on the initial screening results. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that CAG competitively inhibited UGT1A8 and noncompetitively inhibited UGT2B7. From the second plot drawn with the slopes from the Lineweaver-Burk plot versus the concentrations of CAG, the inhibition constant (Ki) was calculated to be 0.034 µM and 20.98 µM for the inhibition of UGT1A8 and UGT2B7, respectively. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1 > [I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), it was successfully predicted here that an in vivo herb-drug interaction between AST/CAG and drugs mainly undergoing UGT1A8- or UGT2B7-catalyzed metabolism might occur when the plasma concentration of CAG is above 0.034 µM and 20.98 µM, respectively.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Sapogeninas/farmacologia , Sapogeninas/farmacocinética , Saponinas/farmacologia , Saponinas/farmacocinética , Triterpenos/farmacologia , Triterpenos/farmacocinética , Medicamentos de Ervas Chinesas , Interações Ervas-Drogas , Isoformas de Proteínas/antagonistas & inibidores
5.
Phytother Res ; 30(11): 1872-1878, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27534594

RESUMO

Praeruptorin A (PA) and B (PB) are two important compounds isolated from Bai-hua Qian-hu and have been reported to exert multiple biochemical and pharmacological activities. The present study aims to determine the inhibition of PA and PB on the activity of important phase II drug-metabolizing enzymes uridine 5'-diphospho-glucuronosyltransferase (UGTs) isoforms. In vitro UGT incubation system was used to determine the inhibition potential of PA and PB on the activity of various UGT isoforms. In silico docking was performed to explain the inhibition difference between PA and PB towards the activity of UGT1A6. Inhibition behaviour was determined, and in vitro-in vivo extrapolation was performed by using the combination of in vitro inhibition kinetic parameter (Ki ) and in vivo exposure level of PA. Praeruptorin A (100 µM) exhibited the strongest inhibition on the activity of UGT1A6 and UGT2B7, with 97.8% and 90.1% activity inhibited by 100 µM of PA, respectively. In silico docking study indicates the significant contribution of hydrogen bond interaction towards the stronger inhibition of PA than PB towards UGT1A6. Praeruptorin A noncompetitively inhibited the activity of UGT1A6 and competitively inhibited the activity of UGT2B7. The inhibition kinetic parameter (Ki ) of PA towards UGT1A6 and UGT2B7 was calculated to be 1.2 and 3.3 µM, respectively. The [I]/Ki value was calculated to be 15.8 and 5.8 for the inhibition of PA on UGT1A6 and UGT2B7, indicating high inhibition potential of PA towards these two UGT isoforms in vivo. Therefore, closely monitoring the interaction between PA and drugs mainly undergoing UGT1A6 or UGT2B7-catalyzed metabolism is very necessary. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cumarínicos/química , Glucuronosiltransferase/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Cumarínicos/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA