Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579646

RESUMO

BACKGROUND: Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE: Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS: The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT: Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS: In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.


Assuntos
Anti-Inflamatórios , Flores , Farmacologia em Rede , Paeonia , Extratos Vegetais , Paeonia/química , Flores/química , Cromatografia Líquida de Alta Pressão , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , NF-kappa B/metabolismo , Células HaCaT , Inflamação/tratamento farmacológico , Pele/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Phytother Res ; 37(7): 2745-2758, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36794391

RESUMO

Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.


Assuntos
Flavonoides , Fibrose Pulmonar , Camundongos , Animais , Flavonoides/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Proteínas Hedgehog/metabolismo , Inflamação , Bleomicina
3.
J Ethnopharmacol ; 303: 115893, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368565

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax japonicus C. A. Meye (PJ) has unique effects on diseases by "qi" stagnation and blood stasis in ancient. Modern studies have shown that PJ can treat diabetic kidney disease (DKD) caused by deficiency and blood stasis. AIM OF THE STUDY: This study evaluated the potential effects of PJ on DKD, a microvascular complication, and investigated its possible mechanisms. MATERIALS AND METHODS: In this study, the chemical constituents of PJ were analyzed by HPLC. In vivo studies, we constructed a diabetic mice model by HDF combined with STZ, then administered PJ to diabetic mice for 6 weeks. Blood lipid, BUN, 24h urine protein, and renal tissue HE staining were detected to comprehensively evaluate the protective effect of PJ on DKD. Metabolomics investigated the metabolic pathways influenced by PJ in the treatment of DKD. Moreover, the potential targets and signal pathways were investigated using network pharmacology. Finally, molecular docking predicts affinity of active compounds and core targets, and western blotting was used to detect core target expression levels. RESULTS: In vivo study, PJ can reduce hyperlipidemia, serum BUN, and 24-h urinary protein in diabetic mice, and protect the pathological changes in renal tissue. Metabolomics results showed that PJ had significant regulatory effect on unsaturated fatty acids, glycerophospholipid metabolism, and purine metabolism. Network pharmacology showed that MAPK1, MAPK8, Bcl-2, and Caspase 3 were the core targets in PJ against DKD. Molecular docking revealed that Bcl-2 and Caspase 3 have a strong affinity for Chikusetsusaponin Iva, Ginsenoside Rb1, and Ginsenoside Rg1. Moreover, when compared to the model group, the PJ group had higher levels of anti-apoptosis protein Bcl-2 and lower levels of pro-apoptosis protein Caspase 3. CONCLUSION: PJ can reduce blood lipids, regulate the biosynthesis of unsaturated fatty acids and purine metabolism, thereby alleviating the renal injury of diabetic mice. Moreover, it can regulate the Bcl-2/caspase 3 apoptosis signaling pathway to prevent the apoptosis of renal cells and protect the renal function of diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Panax , Camundongos , Animais , Caspase 3 , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Farmacologia em Rede , Simulação de Acoplamento Molecular , Rim , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Lipídeos , Proteínas Proto-Oncogênicas c-bcl-2 , Purinas/farmacologia , Purinas/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-35321500

RESUMO

The treatment of benign pelvic lesions and tumors is still a challenge in clinical orthopedics. The surgical procedure was complicated and the postoperative complication was hard to avoid usually. The purpose of this study is to analyze the clinical outcome and predict the fracture risk of benign bone tumors on acetabular dome by finite element analysis. In our research, clinical data of 25 patients were collected from January 2010 to January 2017, including basic information of patients, reconstruction methods, complications, and postoperative MSTS function scores. Finite element analysis (FEA) was used to predict the fracture risk when a benign tumor involved an acetabular dome. 25 patients were followed up for 37.5 ± 5.6 (ranging from 24 to 78) months. Intraoperative bleeding was 100-3000 ml (mean 858.3 ml). The postoperative MSTS93 score was 19.61 ± 7.32 before operation and 26.28 ± 15.59 at the last follow-up. The results of finite element analysis suggest that there was a high risk for pathological fracture in the following: both columns were damaged by tumors; the anterior column and 50% of the posterior column were affected. Other cases were in the low fracture risk group. Based on this study, we believe that, according to the risk assessment results of tumor cavity fracture suggested by the FEA results, combined with the nature of tumor, it may become a useful tool which is a great significance to guide the operation plan, select the operation time, and guide the postoperative functional exercise.

5.
J Biochem Mol Toxicol ; 36(4): e22984, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038199

RESUMO

BACKGROUND: Pneumonia is a serious pediatric lung injury disease caused by Mycoplasma pneumoniae (M. pneumoniae) with increasing global prevalence every year. The WHO has reported that nearly 19% of children die due to pneumonia worldwide. OBJECTIVE: The present research was conducted to discover the ameliorative properties of geraniol against M. pneumoniae-provoked pneumonia in mice through the modulation of inflammatory responses. METHODOLOGY: The pneumonia was provoked in the male Swiss albino mice via infecting animals with 100 µl of M. pneumoniae for 2 days and supplemented concurrently with 20 mg/kg of geraniol for 3 days. 100 mg/kg of azithromycin was used as a standard drug. The nitric oxide (NO) level and MPO activity were measured using kits. The SOD activity, GSH, and MDA levels were studied using standard methods. The polymerase chain reaction (PCR) study was performed to examine the M. pneumoniae DNA load. The inflammatory cytokines status was assessed by assay kits. The ERK1/2, JNK1/2, and NF-κB expressions were studied by reverse-transcription (RT-PCR). The lung tissues were analyzed microscopically to investigate the histological alterations. RESULTS: Geraniol treatment effectively reduced lung weight, NO level, and MPO activity in the pneumonia mice. The total cells and M. pneumoniae DNA load were also decreased by the geraniol. The SOD activity and GSH level were improved and MDA was decreased by the geraniol treatment. The IL-1, IL-6, IL-8, TNF-α, and TGF status were appreciably depleted by the geraniol in the pneumonia mice. Geraniol also suppressed the ERK1/2 and NF-κB expressions in the lung tissues. Histological findings also suggest the therapeutic roles of geraniol against pneumonia in mice. CONCLUSION: In summary, our results proved the beneficial roles of geraniol against the M. pneumoniae-provoked pneumonia. Geraniol could be a hopeful therapeutic agent to treat pneumonia in the future.


Assuntos
Lesão Pulmonar , Pneumonia por Mycoplasma , Monoterpenos Acíclicos , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Mycoplasma pneumoniae/metabolismo , NF-kappa B/metabolismo , Pneumonia por Mycoplasma/tratamento farmacológico , Pneumonia por Mycoplasma/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6663-6671, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604916

RESUMO

This study investigated the mechanism of total flavonoid extract from Dracocephalum moldavica(TFDM) in mice with bleomycin(BLM)-induced pulmonary fibrosis(PF) and explored its mechanism against the pyroptosis pathway. A mouse model of PF was established by intratracheal infusion of bleomycin(4 mg·kg~(-1)), and the normal group was treated with the same dose of saline under the same conditions. After the second day of modeling, the distilled water was given to the normal and model groups by gavage, and the corresponding drug were given to the TFDM and the dexamethasone groups for 28 consecutive days. After 28 days, lung tissues of mice with PF were taken to determine the content of hydroxyproline(HYP). The degree of lung inflammation and fibrosis was observed by hematoxylin-eosin(HE) and Masson stainings, and the content of interleukin-18(IL-18) and interleukin-1ß(IL-1ß) in the serum of mice with PF were measured by enzyme-linked immunosorbent assay(ELISA). Western blot was used to determine the expression levels of proteins in the lung tissues of mice with PF. HE staining showed that the BLM group had abnormal lung tissue structures and showed more inflammatory cell infiltration. Masson staining showed plenty of collagenous fibrotic tissues that were stained blue in the lung tissues. As compared with the normal group, the content of HYP and levels of IL-18 and IL-1ß in the serum of rats in the BLM group were up-regulated(P<0.01). The protein expressions of type Ⅰ collagen(Col-1), fibronectin 1(FN1), α-smooth muscle actin(α-SMA), cysteinyl aspartate specific proteinase-1(caspase-1), gasdermin D(GSDMD), NOD-like receptor thermal protein domain associated protein 3(NLRP3), p62, and apoptosis-associated speck-like protein containing a CARD(ASC) in the lung tissues of mice with PF in the BLM group were increased(P<0.01), whereas the protein expressions of autophagy-related 5(ATG5) and Beclin1 were decreased(P<0.01). Compared with the BLM group, the TFDM groups and dexamethasone group showed normal lung tissue structures and reduced inflammatory cell infiltration. Less collagenous fibrous tissues in blue color were seen and the fibrosis in the lung tissue was alleviated in the TFDM groups and dexamethasone group, with the down-regulation of the content of HYP and the levels of IL-18 and IL-1ß(P<0.05, P<0.01). In the TFDM groups and dexamethasone group, the protein expression levels of Col-1, FN1, α-SMA, caspase-1, GSDMD, NLRP3, p62, and ASC were decreased(P<0.01), and the protein expressions of ATG5 and Beclin1 were increased(P<0.01) in the lung tissues of mice with PF. From the above results, it is known that TFDM down-regulates the levels of inflammatory factors and related proteins, and effectively mitigates the process of BLM-induced PF by regulating the pyroptosis pathways and potentially affecting the autophagy.


Assuntos
Fibrose Pulmonar , Animais , Camundongos , Proteína Beclina-1/farmacologia , Bleomicina/toxicidade , Caspases , Dexametasona/efeitos adversos , Flavonoides/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Piroptose
7.
Food Chem ; 373(Pt B): 131482, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731817

RESUMO

Premna microphylla Turcz. is a commonly used traditional Chinese medicine totreatdysentery and appendicitis. Present study is focused to explore antioxidants and other compounds in the Premna microphylla Turcz. stem. Assessment of chemical composition was done with high sensitivity UPLC-LTQ-Orbitrap-MS and for Separation Thermo Hypersil Gold (100 mm × 2.1 mm, 1.9 µm) was used while electrospray ionization (ESI) was used for the mass spectrometry. 18 compounds were identified including Vitexin (1), Schaftoside (2), Vicenin-2 (3), Apigenin-6, 8-di-C-arabinoside (4), Apigenin-7-O-ß-d-glucoside (5), Carnosic acid (6), Apigenin-8-C-ß-d-xylopyranoside (7), Prostratin (8), Aurantio-obtusin-ß-d-glucoside (9), Royleanone (10), 5-hydroxy-7,3',4'-Trimethoxy flavonols (11), 6-Hydroxy-5,6-dehydrosugiol (12), 14-deoxycoleon (13), Arucadiol (14), Obtusinone-B (15), Trehalose (16), Citric acid (17) and Betaine (18). Among these, 6 compounds including (6), (8), (9), (16), (17) and (18) were identified first time within this genus and plant. Study highlights the importance of Premna microphylla Turcz. stem extract for strong therapeutic potential against oxidation-related diseases.


Assuntos
Antioxidantes , Lamiaceae , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Medicina Tradicional Chinesa , Compostos Fitoquímicos , Espectrometria de Massas por Ionização por Electrospray
8.
Nat Biotechnol ; 39(12): 1581-1588, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34294912

RESUMO

RNA N6-methyladenosine (m6A) modifications are essential in plants. Here, we show that transgenic expression of the human RNA demethylase FTO in rice caused a more than threefold increase in grain yield under greenhouse conditions. In field trials, transgenic expression of FTO in rice and potato caused ~50% increases in yield and biomass. We demonstrate that the presence of FTO stimulates root meristem cell proliferation and tiller bud formation and promotes photosynthetic efficiency and drought tolerance but has no effect on mature cell size, shoot meristem cell proliferation, root diameter, plant height or ploidy. FTO mediates substantial m6A demethylation (around 7% of demethylation in poly(A) RNA and around 35% decrease of m6A in non-ribosomal nuclear RNA) in plant RNA, inducing chromatin openness and transcriptional activation. Therefore, modulation of plant RNA m6A methylation is a promising strategy to dramatically improve plant growth and crop yield.


Assuntos
Oryza , Solanum tuberosum , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Biomassa , Desmetilação , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Solanum tuberosum/genética
9.
Front Pharmacol ; 12: 650438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867992

RESUMO

Background: Guan-Xin-Shu-Tong capsule (GXSTC) is a traditional Chinese medicine (TCM) that has been used to treat coronary heart disease (CHD) for many years in China. However, the holistic mechanism of GXSTC against CHD is still unclear. Therefore, the purpose of this paper was to systematically explore the mechanism of action GXSTC in the treatment of CHD rats using a metabolomics strategy. Methods: A CHD model was induced by ligation of the left anterior descending coronary artery (LAD). In each group, echocardiography was performed; the contents of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) in serum were determined; and the myocardial infarct size was measured. The metabolites in plasma were analyzed by UHPLC-MS/MS-based untargeted metabolomics. Then, multivariate statistical analysis was performed to screen potential biomarkers associated with the GXSTC treatment in the LAD-induced rat CHD model. Finally, the MetaboAnalyst 4.0 platform was used for metabolic pathway enrichment analysis. Results: GXSTC was able to regulate the contents of CK, LDH and AST; restore impaired cardiac function; and significantly reduce the myocardial infarction area in model rats. Twenty-two biomarkers and nine metabolic pathways of GXSTC in the treatment of CHD were identified through UHPLC-MS/MS-based untargeted metabolomics analysis. Conclusion: GXSTC regulates metabolic disorders of endogenous components in LAD-induced CHD rats. The anti-CHD mechanism of GXSTC is mainly related to the regulation of amino acid, lipid and hormonal metabolism. This study provides an overall view of the mechanism underlying the action of GXSTC against CHD.

10.
Food Chem Toxicol ; 150: 112058, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582168

RESUMO

The present study uses network pharmacology to study the potential mechanism of Schisandra against atherosclerosis. Drug-disease targets were explored through the traditional Chinese medicine systemic pharmacology network. STRING database and Cytoscape software were employed to construct a component/pathway-target interaction network to screen the key regulatory factors from Schisandra. For cellular, biological and molecular pathways, Gene Ontology (GO) and KEGG pathway analyses were used while the interceptive acquaintances of the pathways was obtained through Metascape database. Initial molecular docking analyses of components from Schisandra pointed the possible interaction of non-muscle myosin ⅡA (NM ⅡA) against atherosclerosis. The screening results from GO and KEGG identified 525 possible targets of 18 active ingredients from Schisandra that further pointed 1451 possible pathways against the pathogenesis of disease whereas 167 targets were further refined based on common/interesting signaling target pathways. Further results of molecular signaling by docking identified very compatible binding between NM IIA and the constituents of Schisandra. Schisandra has a possible target of the serotonergic synapse, neuroactive ligand-receptor interaction and also has close interference in tumor pathways through PTGS2, NOS3, HMOX1 and ESR1. Moreover, it is also concluded that Schisandra has a close association with neuroendocrine, immune-inflammation and oxidative stress. Therefore, it may have the potential of therapeutic utility against atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Schisandra/química , Animais , Avaliação Pré-Clínica de Medicamentos , Frutas/química , Humanos , Extratos Vegetais/química , Mapas de Interação de Proteínas
11.
Food Chem Toxicol ; 148: 111961, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385513

RESUMO

Isodon amethystoides (Benth.) Hara (IA) tea is a commonly used dietetic Chinese herb and employed for the treatments of tumor and lung abscess. To assess chemical composition and antioxidant capacity of IA leaves extract, a UPLC-LTQ-Orbitrap-MS method and antioxidant tests were used, respectively. 17 compounds were identified including Vinyl caffeate (1), 3,4-dimethoxyphenyl-ß-D-glucopyranoside (2), Rutin (3), Quercetin (4), Loliolide (5), Caffeic acid (6), Rubesanolide D (7), Isorhamnetin (8), Lambertic acid (9), 6, 7-Dehydroroyleanone (10), Dihydrorabdokunmin C (11), Nervosin (12), Quercitrin (13), Vitexin (14), ß-sitosterol (15), Wangzaozin A (16), Amethystonoic acid (17). Among these, 1-14 compounds were novel and have not been reported ever before in IA while component 10 was a novel finding within this genus. Flavonoid components showed better free radical scavenging ability and profound correlation was observed between diterpenoid compounds content and flavonoids activity. Our results provide experimental basis for extraction and separation of chemical constituents of IA which are antioxidant in nature.


Assuntos
Medicamentos de Ervas Chinesas/análise , Sequestradores de Radicais Livres/análise , Isodon/química , Compostos Fitoquímicos/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Espectrometria de Massas , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação
12.
Fitoterapia ; 142: 104499, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32058049

RESUMO

3-O-[(E)-4-(4-cyanophenyl)-2-oxobut-3-en-1-yl] kaempferol is a novel lead compound to discover anti-diabetic and anti-obesity drugs. The present study reported the scaffold hopping of the lead compound to obtain a new isoxazole derivative, C45, which has improved glucose consumption at the nanomolar level (EC50 = 0.8 nM) in insulin resistant (IR) HepG2 cells. Western blotting showed that C45 markedly enhanced the phosphorylation of AMPK (AMP-activated protein kinase) and reduced the levels of the gluconeogenesis key enzymes PEPCK (phosphoenolpyruvate carboxykinase) and G6Pase (glucose 6-phosphatase) in HepG2 cells. The potential molecular mechanism of C45 may be activation of the AMPK/PEPCK/G6Pase pathways. We concluded that C45 might be a valuable candidate to discover anti-diabetic drugs.


Assuntos
Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Flavonoides/química , Glucose/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/química , Estrutura Molecular
13.
Food Chem Toxicol ; 134: 110831, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545996

RESUMO

Bee pollens constitute a large number of flavonoids and thus possess great medicinal value. However different varieties of bee pollen flavonoids vary with different species and their content also differ greatly in different region. Herein, the aim of present research is to establish a method based on high performance liquid chromatography (HPLC) for quantitative analysis of flavonoids compounds and chemical fingerprint analysis of bee pollen. Five batches of rape bee pollen collected from different region of China and particularly six bee pollen species obtained in Anhui were used to establish the fingerprint. The feasibility and advantages of the used HPLC fingerprint were verified for its similarity evaluation by systematically comparing chromatograms with professional analytical software. The similarities of liquid chromatography fingerprints for five batches of rape bee pollen were more than 0.994 while six batches of different species of bee pollen were lower than 0.810. In quantitative analysis, the six compounds showed good regression (R ≥ 0.9964) within the test ranges, and all the values for the RSD were lower than 2%. The developed HPLC fingerprint method was found simple, reliable, and it was validated for the quality control and identification of bee pollen. Additionally, simultaneous quantification of six flavonoids ingredients in the bee pollen samples was conducted to reveal the variation in their content. The results indicated that the HPLC fingerprint, as a characteristic distinguishing method combining similarity evaluation and quantification analysis, can be successfully used to assess the quality and also to identify the authenticity of bee pollen.


Assuntos
Abelhas , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Pólen/química , Animais , Limite de Detecção , Controle de Qualidade , Reprodutibilidade dos Testes
14.
Curr Mol Med ; 19(4): 303-314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30950348

RESUMO

BACKGROUND: Compound Fengshiding capsule (CFC), is a Chinese formulation from herbal origin including Alangium platanifolium, Angelicae dahurica, Cynanchum paniculatum and Glycyrrhiza uralensis. CFC is widely used as clinical therapy against rheumatoid arthritis. However, its exact mechanism of action has not been explored yet. METHODS: In order to explore the synergistic mechanism of CFC, we designed a study adopting network pharmacology scheme to screen the action targets in relation to the CFC components. The study analyses target facts of salicin, paeonol, liquiritin and imperatorin from PubMed database, and explores the potential pharmacological targets of rheumatoid arthritis, cervical neuralgia and sciatica related diseases for their interaction. RESULTS: The results of boosted metabolic pathway showed that the chemical components of CFC interrupted many immune-related pathways, thus participating in immunity regulation of the body and playing a role in the treatment of rheumatism. Collectively, CFC has apoptotic, oxidative stress modulatory and anti-inflammatory effects that accumulatively serve for its clinical application against rheumatoid arthritis. CONCLUSION: Conclusively, our findings from present study reconnoiters and compacts systematic theoretical approach by utilizing the network pharmacology mechanism of four effective components for the treatment of rheumatism indicating sufficient potential drug targets associated with CFC against rheumatism. These interesting findings entreaties for further in vitro and in vivo studies on the mechanism of compound active ingredient against rheumatism.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Biomarcadores , Biologia Computacional/métodos , Bases de Dados Genéticas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Ontologia Genética , Humanos , Medicina Tradicional Chinesa , Estrutura Molecular , Mapeamento de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos
15.
J Agric Food Chem ; 67(10): 2856-2864, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30785275

RESUMO

Among the various treatments, induction of synoviocyte apoptosis by natural products during a rheumatoid arthritis (RA) pathological condition can be considered to have vast potential. However, it is unclear that liquiritin, a kind of natural flavonoid extracted from the roots of Glycyrrhiza uralensis, induced the apoptosis of the synovial membrane and its molecular mechanism. In this study, interleukin-1ß (IL-1ß)-RA-FLS cells were incubated with different concentrations of liquiritin. An MTT assay, Hoechst 33342 staining, JC-1 staining, and Western blot were used to check the viability, cell apoptosis, mitochondrial membrane potential changes, and the expression of related proteins, respectively. In vivo, a TUNEL assay and HE staining of tissue were used for histopathological evaluation. Our results showed that liquiritin significantly inhibited the proliferation of IL-1ß-induced-RA-FLS, promoted nuclear DNA fragmentation, and changed the mitochondrial membrane potential to accelerate cell apoptosis. Liquiritin downregulated the ratio of Bcl-2/Bax and inhibited the VEGF expression and phosphorylation of JNK and P38. Moreover, liquiritin improved the clinical score of rheumatism, inflammatory infiltration, and angiogenesis and induced apoptosis of the synovial tissue in vivo. Hence, liquiritin ameliorates RA by reducing inflammation, blocking MAPK signaling, and restraining angiogenesis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Glucosídeos/administração & dosagem , Glycyrrhiza uralensis/química , Neovascularização Patológica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Artrite Reumatoide/genética , Artrite Reumatoide/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Neovascularização Patológica/fisiopatologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
16.
J Agric Food Chem ; 66(24): 6073-6082, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29852739

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disorder linked to oxidative stress of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs). The effects and potential mechanism of salicin on inflammation and oxidative stress of RA-FLSs were examined by MTT, ELISA, and Western blot methods. Salicin significantly reduced cell viability (82.03 ± 7.06, P < 0.01), cytokines (47.70 ± 1.48 ng/L for TNF-α, 30.03 ± 3.49 ng/L for IL-6) ( P < 0.01), and matrix metalloproteinases-1/-3 expression ( P < 0.01) in IL-1ß-induced RA-FLSs and inhibited ROS generation and p65 phosphorylation ( P < 0.01) as compared with IL-1ß-induced treatment. Moreover, salicin promoted Nrf2 nuclear translocation (2.15 ± 0.21) and HO-1 expression (1.12 ± 0.05) and reduced ROS production in IL-1ß-induced RA-FLSs ( P < 0.01). Salicin not only reduced the collagen-induced arthritis by reducing the clinical score ( P < 0.01), inflammatory infiltration, and synovial hyperplasia in vivo but also suppressed the oxidative damage indexes (SOD 155.40 ± 6.53 U/mg tissue, MDA 152.80 ± 5.89 nmol/g tissue, GSH 50.98 ± 3.45 nmol/g tissue, and CAT 0.92 ± 0.10 U/g protein) ( P < 0.01) of ankle joint cells. Conclusively, our findings indicate that salicin ameliorates rheumatoid arthritis, which may be associated with oxidative stress and Nrf2-HO-1-ROS pathways in RA-FLSs.


Assuntos
Alangiaceae/química , Artrite Reumatoide/tratamento farmacológico , Álcoois Benzílicos/administração & dosagem , Glucosídeos/administração & dosagem , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Heme Oxigenase-1/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Fitoterapia ; 127: 1-6, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29625144

RESUMO

Ionone alkaloid 9-(N,N-dimethyl)-4,7-megastigmedien-3-one (compound 1) is a new anti-metastatic natural product. However, it was previously reported as optical isomers mixture. Herein, the optical isomers (6a-6d) of compound 1 were synthesized. The absolute configurations of 6a-6d were determined by ECD experiments and calculated spectra with time-dependent density functional theory (TDDFT). The anti-metastatic effects of the optical isomers were examined by transwell assay. These results revealed that compound 6a had potential anti-metastatic activity with an IC50 value of 0.512 ±â€¯0.093 µM.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Norisoprenoides/farmacologia , Alcaloides/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Humanos , Isomerismo , Estrutura Molecular , Norisoprenoides/síntese química , Pachysandra/química
18.
J Biochem Mol Toxicol ; 31(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28714536

RESUMO

1-Phenyl-5-p-tolyl-1H-1, 2, 3-triazole (PPTA) was a synthesized compound. The result of acute toxicities to mice of PPTA by intragastric administration indicated that PPTA did not produce any significant acute toxic effect on Kunming strain mice. It exhibited the various potent inhibitory activities against two kinds of bananas pathogenic bacteria, black sigatoka and freckle, when compared with that of control drugs and the inhibitory rates were up to 64.14% and 43.46%, respectively, with the same concentration of 7.06 mM. The interaction of PPTA with human serum albumin (HSA) was studied using fluorescence polarization, absorption spectra, 3D fluorescence, and synchronous spectra in combination with quantum chemistry and molecular modeling. Multiple modes of interaction between PPTA and HSA were suggested to stabilize the PPTA-HSA complex, based on thermodynamic data and molecular modeling. Binding of PPTA to HSA induced perturbation in the microenvironment around HSA as well as secondary structural changes in the protein.


Assuntos
Anti-Infecciosos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Albumina Sérica Humana/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia , Animais , Sítios de Ligação , Feminino , Polarização de Fluorescência , Fungicidas Industriais/farmacologia , Humanos , Masculino , Camundongos , Modelos Moleculares , Musa/microbiologia , Estrutura Secundária de Proteína , Albumina Sérica Humana/química , Testes de Toxicidade Aguda , Triazóis/toxicidade
19.
J Pharmacol Sci ; 130(2): 94-100, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26823124

RESUMO

Extract of Rabdosia amethystoides (Benth) Hara (ERA), a traditional Chinese medicine has antibacterial, antiviral, anti-tumor, anti-hepatitis and anti-inflammatory properties. However, the hepatoprotective effects and molecular mechanisms of ERA on acute liver injury have not been fully elucidated. This study aims to investigate the anti-inflammatory effect and liver protection of ERA against the acute liver injury induced by Concanavalin A (Con A) and its underlying molecular mechanisms in mice. Mice received ERA (50, 100, 150 mg/kg body weight) by gavage before Con A intravenous administration. We found that ERA pretreatment was able to significantly reduce the elevated serum alanine and aspartate aminotransferase levels and liver necrosis in Con A-induced hepatitis. In addition, ERA treatment significantly decreased the myeloperoxidase, malondialdehyde levels and augmented superoxide dismutase level in the liver tissue, and also suppressed the secretion of proinflammatory cytokines in the serum, compared with Con A group by enzyme linked immunosorbent assay. Furthermore, we observed that ERA pretreatment can significantly decrease the expression level of Toll-like receptor (TLR) 4 mRNA or protein in liver tissues. Further results showed that ERA pretreatment was capable of attenuating the activation of the NF-κB pathway by inhibiting IκBα kinase and p65 phosphorylation in Con A-induced liver injury. Our results demonstrate that ERA pretreatment has hepatoprotective property against Con A-induced liver injury through inhibition of inflammatory mediators in mice. The beneficial effect of ERA may be mediated by the downregulation of TLR4 expression and the inhibition of NF-κB activation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Concanavalina A/efeitos adversos , Isodon/química , Fígado/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-26557854

RESUMO

Tet is a type of alkaloid extracted from Stephania tetrandra, and it has recently been demonstrated that Tet can protect against inflammation and free radical injury and inhibit the release of inflammatory mediators. The present study was designed to observe the protective effect of Tet on sodium taurocholate-induced severe acute pancreatitis (SAP). The rat model of SAP was induced by retrograde bile duct injection of sodium taurocholate and then treated with Verapamil and Tet. The results showed that Tet can reduce NF-κB activation in pancreas issue, inhibit the SAP cascade, and improve SAP through inducing pancreas acinar cell apoptosis and stabilizing intracellular calcium in the pancreas, thus mitigating the damage to the pancreas. Our study revealed that Tet may reduce systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndromes (MODS) to protect against damage, and these roles may be mediated through the NF-κB pathway to improve the proinflammatory/anti-inflammatory imbalance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA