Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1160418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959925

RESUMO

As a leading oilseed crop that supplies plant oil and protein for daily human life, increasing yield and improving nutritional quality (high oil or protein) are the top two fundamental goals of soybean breeding. Seed size is one of the most critical factors determining soybean yield. Seed size, oil and protein contents are complex quantitative traits governed by genetic and environmental factors during seed development. The composition and quantity of seed storage reserves directly affect seed size. In general, oil and protein make up almost 60% of the total storage of soybean seed. Therefore, soybean's seed size, oil, or protein content are highly correlated agronomical traits. Increasing seed size helps increase soybean yield and probably improves seed quality. Similarly, rising oil and protein contents improves the soybean's nutritional quality and will likely increase soybean yield. Due to the importance of these three seed traits in soybean breeding, extensive studies have been conducted on their underlying quantitative trait locus (QTLs) or genes and the dissection of their molecular regulatory pathways. This review summarized the progress in functional genome controlling soybean seed size, oil and protein contents in recent decades, and presented the challenges and prospects for developing high-yield soybean cultivars with high oil or protein content. In the end, we hope this review will be helpful to the improvement of soybean yield and quality in the future breeding process.

2.
Plant Biotechnol J ; 20(9): 1807-1818, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642379

RESUMO

Seed size is one of the most important agronomic traits determining the yield of crops. Cloning the key genes controlling seed size and pyramiding their elite alleles will facilitate yield improvement. To date, few genes controlling seed size have been identified in soybean, a major crop that provides half of the plant oil and one quarter of the plant protein globally. Here, through a genome-wide association study of over 1800 soybean accessions, we determined that natural allelic variation at GmST05 (Seed Thickness 05) predominantly controlled seed thickness and size in soybean germplasm. Further analyses suggested that the two major haplotypes of GmST05 differed significantly at the transcriptional level. Transgenic experiments demonstrated that GmST05 positively regulated seed size and influenced oil and protein contents, possibly by regulating the transcription of GmSWEET10a. Population genetic diversity analysis suggested that allelic variations of GmST05 were selected during geographical differentiation but have not been fixed. In summary, natural variation in GmST05 determines transcription levels and influences seed size and quality in soybean, making it an important gene resource for soybean molecular breeding.


Assuntos
Alelos , Estudo de Associação Genômica Ampla , Glycine max/genética , Sementes/anatomia & histologia , Sementes/genética , Clonagem Molecular , Variação Genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Glycine max/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA