Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 21(1): 167-175, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30184303

RESUMO

Long-lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward-free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked. We examined pollination-dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments. Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15-30%) of newly opened flowers. Accordingly, the retention of reward-free and unvisited old flowers increased young flower-pollinator interaction. Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward-free and unvisited colour-unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen-limited scenario.


Assuntos
Flores/fisiologia , Malpighiaceae/fisiologia , Pigmentação/fisiologia , Polinização/fisiologia , Animais , Abelhas/fisiologia , Pólen/fisiologia
2.
Plant Biol (Stuttg) ; 19(2): 140-146, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27870312

RESUMO

Mixed cross and self-pollen load on the stigma (mixed pollination) of species with late-acting self-incompatibility system (LSI) can lead to self-fertilized seed production. This "cryptic self-fertility" may allow selfed seedling development in species otherwise largely self-sterile. Our aims were to check if mixed pollinations would lead to fruit set in LSI Adenocalymma peregrinum, and test for evidence of early-acting inbreeding depression in putative selfed seeds from mixed pollinations. Experimental pollinations were carried out in a natural population. Fruit and seed set from self-, cross and mixed pollinations were analysed. Further germination tests were carried out for the seeds obtained from treatments. Our results confirm self-incompatibility, and fruit set from cross-pollinations was three-fold that from mixed pollinations. This low fruit set in mixed pollinations is most likely due to a greater number of self- than cross-fertilized ovules, which promotes LSI action and pistil abortion. Likewise, higher percentage of empty seeds in surviving fruits from mixed pollinations compared with cross-pollinations is probably due to ovule discounting caused by self-fertilization. Moreover, germinability of seeds with developed embryos was lower in fruits from mixed than from cross-pollinations, and the non-viable seeds from mixed pollinations showed one-third of the mass of those from cross-pollinations. The great number of empty seeds, lower germinability, lower mass of non-viable seeds, and higher variation in seed mass distribution in mixed pollinations, strongly suggests early-acing inbreeding depression in putative selfed seeds. In this sense, LSI and inbreeding depression acting together probably constrain self-fertilized seedling establishment in A. peregrinum.


Assuntos
Bignoniaceae/fisiologia , Depressão por Endogamia , Polinização , Autoincompatibilidade em Angiospermas , Bignoniaceae/genética , Bignoniaceae/crescimento & desenvolvimento , Biomassa , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Germinação , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Autofertilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA