Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Orthod Dentofacial Orthop ; 161(1): 103-114, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34452788

RESUMO

INTRODUCTION: Fixed orthodontic appliances create areas of stagnation for dental biofilms and make it difficult to clean the teeth; therefore, there is a risk of developing incipient caries lesions during the orthodontic treatment. The objective of this study is to determine if the combination of 2 different therapies, phototherapy by blue light (BL) and the antimicrobial 0.12% chlorhexidine (CHX) on enamel, orthodontic brackets, and elastics, would reduce or inhibit mature Streptococcus mutans biofilms and their regrowth on these substrates 24 hours after the application of the treatment; and if this treatment would interfere with bracket adhesion to the enamel. METHODS: Biofilms of S. mutans UA159 were formed for 5-days over samples composed of a bovine enamel, orthodontic bracket, and orthodontic elastic. Then, the specimens were treated with 0.89% NaCl for 1 minute, BL for 12 minutes (72 J/cm2), 0.12% CHX for 1 minute, and BL for 12 minutes, followed by 0.12% CHX for 1 minute (BL+CHX). Biofilm was evaluated by colonies forming units and dry weight immediately after treatments and 24 hours after treatments (regrowth). The pH of the spent media was measured on the fifth and sixth days. Biofilm formation on the samples after the treatments and regrowth was visually evaluated by confocal laser scanning microscopy. Shear bond strength (SBS) between bracket and enamel was evaluated using a universal testing machine at a crosshead speed of 1 mm/min. After bonding, specimens were thermocycled (500× at 5-55°C), treated, and thermocycled again. RESULTS: After 5 days of biofilm formation, BL+CHX significantly reduced the bacterial viability on enamel compared with NaCl (P = 0.004) and BL (P = 0.014). For bracket and elastic, all the treatments resulted in similar bacterial viability (P ≥0.081). In the regrowth, CHX and BL+CHX significantly reduced the bacterial viability in the enamel compared with the NaCl (P ≤0.015) and BL (P ≤0.013). For bracket, BL+CHX significantly reduced the bacterial viability compared with NaCl (P = 0.008) and BL (P = 0.009). For the elastic, BL+CHX eliminated the biofilms from the substrate. CHX and BL+CHX significantly reduced the bacterial viability 24 hours after treatment for all substrates (P ≤0.05). The media pH significantly increased when samples were treated with CHX and BL+CHX (P ≤0.001). Confocal laser scanning microscopy images visually showed an abundant quantity of red cells in the samples treated with BL+CHX. There was no difference in the SBS between the treatments (P ≥0.932). CONCLUSIONS: The association between BL and CHX reduced S. mutans biofilm and its regrowth on an in vitro orthodontic model and did not influence the bonding strength between bracket and enamel.


Assuntos
Braquetes Ortodônticos , Streptococcus mutans , Animais , Biofilmes , Bovinos , Clorexidina , Fototerapia
2.
J Vis Exp ; (146)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31081821

RESUMO

Here, we present a protocol to assess the outcomes of per diem red light treatment on the growth of Candida albicans biofilm. To increase the planktonic growth of C. albicans SN425, the inoculums grew on Yeast Nitrogen Base media. For biofilm formation, RPMI 1640 media, which have high concentrations of amino acids, were applied to help biofilm growth. Biofilms of 48 h were treated twice a day for a period of 1 min with a non-coherent light device (red light; wavelength = 635 nm; energy density = 87.6 J·cm-2). As a positive control (PC), 0.12% chlorhexidine (CHX) was applied, and as a negative control (NC), 0.89% NaCl was applied to the biofilms. Colony forming units (CFU), dry-weight, soluble and insoluble exopolysaccharides were quantified after treatments. Briefly, the protocol presented here is simple, reproducible and provides answers regarding viability, dry-weight and extracellular polysaccharide amounts after red light treatment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Luz , Candida albicans/citologia , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/metabolismo , Cinética , Solubilidade
3.
Lasers Med Sci ; 34(3): 441-447, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30097756

RESUMO

Phototherapy has been proposed as a direct means of affecting local bacterial infections. However, the use of phototherapy to prevent fungal biofilm development has received comparatively less attention. This study aimed to determine the effects of red light treatment and blue light treatment, without a photosensitizer, on the development of Candida albicans biofilm. During the development of 48-h biofilms of C. albicans SN 425 (n = 10), the biofilms were exposed twice-daily to noncoherent blue and red light (LumaCare; 420 nm and 635 nm). The energy density applied was 72 J cm-2 for blue light and 43.8 J cm2, 87.6 J cm2, and 175.5 J cm2 for red light. Positive control (PC) and negative control (NC) groups were treated twice-daily for 1 min with 0.12% chlorhexidine (CHX) and 0.89% NaCl respectively. Biofilms were analyzed for colony forming units (CFU), dry-weight, and exopolysaccharides (EPS-soluble and EPS-insoluble). Data was analyzed by one-way ANOVA and Tukey post hoc test (α = 0.05). Dry-weight was lower than NC (p < 0.001) and approached PC levels with both red and blue light treatments. CFU were also lower in groups exposed to blue light and higher durations of red light (p < 0.05). EPS-soluble and EPS-insoluble measures were variably reduced by these light exposures. In conclusion, twice-daily exposure to both blue and red lights affect the biofilm development and physiology of polysaccharide production and are potential mechanisms for the control of C. albicans biofilm matrix development.


Assuntos
Biofilmes/efeitos da radiação , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Matriz Extracelular de Substâncias Poliméricas/efeitos da radiação , Fototerapia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Clorexidina/farmacologia , Intervalos de Confiança , Humanos , Fármacos Fotossensibilizantes/farmacologia
4.
FEMS Microbiol Lett ; 257(1): 50-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16553831

RESUMO

Cranberry fruit is a rich source of polyphenols, and has shown biological activities against Streptococcus mutans. In the present study, we examined the influence of extracts of flavonols (FLAV), anthocyanins (A) and proanthocyanidins (PAC) from cranberry on virulence factors involved in Streptococcus mutans biofilm development and acidogenicity. PAC and FLAV, alone or in combination, inhibited the surface-adsorbed glucosyltransferases and F-ATPases activities, and the acid production by S. mutans cells. Furthermore, biofilm development and acidogenicity were significantly affected by topical applications of PAC and FLAV (P<0.05). Anthocyanins were devoid of any significant biological effects. The flavonols are comprised of mostly quercetin glycosides, and the PAC are largely A-type oligomers of epicatechin. Our data show that proanthocyanidins and flavonols are the active constituents of cranberry against S. mutans.


Assuntos
Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Fenóis/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/metabolismo , Vaccinium macrocarpon/química , Antocianinas/química , Antocianinas/farmacologia , Biofilmes/crescimento & desenvolvimento , Flavonóis/química , Flavonóis/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis , Proantocianidinas/química , Proantocianidinas/farmacologia , Streptococcus mutans/crescimento & desenvolvimento
5.
J Ethnopharmacol ; 101(1-3): 110-5, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-15913934

RESUMO

Recently, two chemically different types of Brazilian propolis (type-3 and -12) were shown to have cariostatic properties. This study aimed to evaluate the influence of their isolated fractions on mutans streptococci viability, glucosyltransferases (GTFs) activity and caries development in rats. The ethanolic extracts of propolis (EEPs) were serially fractionated into hexane (H-fr), chloroform, ethyl acetate, and ethanol. The ability of the four fractions and EEP to inhibit Streptococcus mutans and Streptococcus sobrinus growth and adherence to a glass surface was examined. The effect on GTFs B and C activity was also determined. For the caries study, 60 Wistar rats infected with Streptococcus sobrinus were treated topically twice daily as follows: (1) EEP type-3, (2) H-fr type-3, (3) EEP type-12, (4) H-fr type-12, and (5) control. In general, the H-fr from both types of propolis showed the highest antibacterial activity and GTFs inhibition. Furthermore, the EEP and H-fr type-3 and -12 were equally effective in reducing dental caries in rats. The data suggest that the putative cariostatic compounds of propolis type-3 and -12 are mostly non-polar; and H-fr should be the fraction of choice for identifying further potentially novel anti-caries agents.


Assuntos
Cariostáticos/farmacologia , Própole/análise , Própole/farmacologia , Animais , Brasil , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Feminino , Glucosiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Ratos , Ratos Wistar , Streptococcus sobrinus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA