Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Biol Macromol ; 233: 123565, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740131

RESUMO

In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 µL/mL, respectively and AFB1 production at 5.0 µL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.


Assuntos
Quitosana , Citrus sinensis , Citrus , Filmes Comestíveis , Óleos Voláteis , Valeriana , Aflatoxina B1/metabolismo , Óleos Voláteis/química , Quitosana/química , Citrus sinensis/metabolismo , Valeriana/metabolismo , Frutas/química , Citrus/metabolismo , Melhoria de Qualidade , Fungos/metabolismo , Aspergillus flavus , Antifúngicos/farmacologia
2.
Chemosphere ; 305: 135165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35667508

RESUMO

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.


Assuntos
Desenvolvimento Vegetal , Silício , Agricultura , Estresse Oxidativo , Plantas , Silício/farmacologia , Estresse Fisiológico
3.
Nat Prod Res ; 36(17): 4569-4574, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34672233

RESUMO

This study aimed to investigate the efficiency of chemically characterised Carum carvi essential oil (CcEO) against aflatoxin B1 (AFB1) producing strain of Aspergillus flavus (AF-LHP-WS-4) causing deterioration of herbal raw materials (HRM). GC-MS analysis of the EO revealed the presence of carvone (69.85%) as a dominant component. CcEO caused complete suppression of A. flavus growth and AFB1 secretion at 0.7 and 0.6 µL/mL, respectively. The investigation on antifungal mode of action showed that CcEO inhibited fungal growth via abrogating ergosterol biosynthesis and triggered efflux of vital cellular ions. The inhibition of AFB1 biosynthesis was attributed to the inhibition of cellular methylglyoxal (MG) biosynthesis. In addition, CcEO showed remarkable antioxidant activity (IC50 = 10.564 µL/mL) against DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals. Based on overall results, it can be concluded that the CcEO may be recommended as potential antifungal agent for protection of HRM from fungal infestation and AFB1 contamination.


Assuntos
Aflatoxinas , Carum , Óleos Voláteis , Aflatoxina B1 , Antifúngicos/farmacologia , Aspergillus flavus , Óleos Voláteis/farmacologia
4.
Int J Biol Macromol ; 171: 480-490, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33428956

RESUMO

In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 µL/mL and 0.75 µL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 µL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.


Assuntos
Antifúngicos/administração & dosagem , Antioxidantes/administração & dosagem , Arachis/microbiologia , Aspergillus flavus/efeitos dos fármacos , Cananga/química , Conservantes de Alimentos/administração & dosagem , Nanocápsulas/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos de Plantas/administração & dosagem , Aflatoxina B1/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Aspergillus flavus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Emulsões , Conservantes de Alimentos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Química Verde , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Sementes/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
5.
Nat Prod Res ; 35(5): 782-787, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30938173

RESUMO

The present investigation reports antifungal and antiaflatoxigenic efficacy of Salvia sclarea essential oil (SSEO) and its combination with Linalyl acetate (LA) (1:1) against herbal drug deteriorating molds and aflatoxin B1 contamination. GC-MS analysis of SSEO showed Linalyl Acetate (LA) (61.33%) and Linalool (LL) (17.59%) as major components. The SSEO and LA combination displayed better antifungal and antiaflatoxigenic activity as compared to SSEO and LA used individually. SSEO and LA combination was effective in reduction of ergosterol and enhanced leakage of vital ions and UV-absorbing materials in a dose dependent manner. The combination caused significant reduction in cellular methylglyoxal content, an aflatoxin inducer suggesting its future application for development of aflatoxin resistant herbal drug varieties through green transgenics. The combination also showed pronounced antioxidant activity as compared to SSEO and LA used separately. Interestingly, the combination showed significant in situ protection of Picrorhiza kurroa rhizomes against mould infestation.


Assuntos
Aflatoxinas/análise , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Contaminação de Medicamentos , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Salvia/química , Sequestradores de Radicais Livres/farmacologia , Fungos/efeitos dos fármacos , Preparações Farmacêuticas
6.
J Food Sci ; 86(1): 149-160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33314161

RESUMO

The present study envisages the potential application of chitosan-coated Zingiber zerumbet essential oil nanoemulsion (ZEO-CsNE) as green antimicrobial preservative against Aspergillus flavus, aflatoxin B1 (AFB1 ), and lipid peroxidation of stored functional foods. GC-MS analysis of ZEO exhibited the abundance of cis-geraniol (15.53%) as the major component. ZEO-CsNE showed biphasic release profile during in vitro release study conducted for 10 days. The ZEO-CsNE inhibited the growth of A. flavus (strain AF-LHP-SH1) and AFB1 production at 1.0 and 0.8 µL/mL, respectively. Interestingly, considerable reduction in ergosterol biosynthesis followed by enhanced leakage of vital cellular contents and methylglyoxal inhibition represents novel antifungal and antiaflatoxigenic mechanism of action, respectively. Further, ZEO-CsNE inhibited lipid peroxidation and AFB1 production in postharvest Salvia hispanica seeds during in situ trial and presented favorable safety profile (median lethal dose [LD50 ] = 29,114 µL/kg) for male mice. Based on overall observations, ZEO-CsNE could be recommended as a green antimicrobial substitute of synthetic preservatives for in vitro and in situ protection of functional food samples. PRACTICAL APPLICATION: Food industries are facing enormous amount of burden coming from fungal and aflatoxin contamination that can cause severe adverse effects to humans. Essential oils (EOs) are well known for their food preservative efficacy; however, some limitations such as oxidative instability in open system may limit their application directly into food system. The encapsulation of the EOs into polymeric matrix could provide a barrier that will protect the EOs from degradation. This research could provide a basis for utilization of EO after encapsulation into chitosan nanoemulsion for industrial-scale application for preservation of stored functional foods from fungal and aflatoxin contamination.


Assuntos
Aflatoxina B1/química , Antifúngicos/farmacologia , Quitosana/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Zingiberaceae/química , Aflatoxina B1/toxicidade , Animais , Antifúngicos/química , Quitosana/farmacologia , Emulsões , Conservantes de Alimentos/farmacologia , Fungos/efeitos dos fármacos , Química Verde , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Nanoestruturas/química , Óleos Voláteis/química , Óleos de Plantas/química
7.
Food Chem Toxicol ; 143: 111536, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640350

RESUMO

Origanum majorana essential oil (OmEO) encapsulated into chitosan nanoemulsion is being reported as a novel preservative of stored food items against fungi, aflatoxin B1 (AFB1) contamination and lipid peroxidation. The major component of OmEO identified through GC-MS was terpinen-4-ol (28.92%). HR-SEM, FTIR and XRD analyses confirmed successful encapsulation of OmEO into chitosan nanoemulsion (OmEO-CsNe). The results showed remarkable improvement in efficacy after nanoencapsulation, since OmEO-CsNe completely inhibited the growth and AFB1 production by Aspergillus flavus at 1.0 µL/mL, which was 2.5 and 1.5 µL/mL, respectively for OmEO. The inhibition of ergosterol followed by release of cellular ions and 260 and 280 nm absorbing materials demonstrated plasma membrane as possible antifungal target. Inhibition of methylglyoxal confirmed antiaflatoxigenic mode of action. OmEO-CsNe showed enhanced antioxidant activity (IC50 = 14.94 and 5.53 µL/mL for DPPH and ABTS, respectively) and caused in situ inhibition of lipid peroxidation and AFB1 production in maize (third most important staple crop after wheat and rice) without altering their sensory attributes and presented safety profile (LD50 = 11,889 µL/kg) when tested on mice. The findings indicate that the encapsulation considerably enhances the performance of OmEO, therefore can be recommended as a promising antifungal agent to extend the shelf-life of food items.


Assuntos
Aflatoxina B1/antagonistas & inibidores , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Óleos Voláteis/farmacologia , Origanum/química , Óleos de Plantas/farmacologia , Animais , Antifúngicos/química , Antioxidantes/química , Quitosana/química , Ergosterol , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Fungos/efeitos dos fármacos , Peroxidação de Lipídeos , Masculino , Camundongos , Nanoestruturas , Óleos Voláteis/química , Óleos Voláteis/toxicidade , Óleos de Plantas/química , Óleos de Plantas/toxicidade , Sementes/microbiologia , Testes de Toxicidade , Zea mays/microbiologia
8.
Ecotoxicol Environ Saf ; 189: 110000, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31787384

RESUMO

The present study deals with encapsulation of Myristica fragrans essential oil (MFEO) into chitosan nano-matrix, their characterization and assessment of antimicrobial activity, aflatoxin inhibitory potential, safety profiling and in situ efficacy in stored rice as environment friendly effective preservative to control the postharvest losses of food commodities under storage. Surface morphology of MFEO-chitosan nanoemulsion as well as encapsulation of MFEO was confirmed through SEM, FTIR and XRD analysis. In vitro release characteristics with biphasic burst explained controlled volatilization from nanoencapsulated MFEO. Unencapsulated MFEO exhibited fungitoxicity against 15 food borne molds and inhibited aflatoxin B1 secretion by toxigenic Aspergillus flavus LHP R14 strain. In contrast, nanoencapsulated MFEO showed better fungitoxicity and inhibitory effect on aflatoxin biosynthesis at lower doses. In situ efficacy of unencapsulated and nanoencapsulated MFEO on stored rice seeds exhibited effective protection against fungal infestation, aflatoxin B1 contamination, and lipid peroxidation. Both the unencapsulated and nanoencapsulated MFEO did not affect the germination of stored rice seeds confirming non-phytotoxic nature. In addition, negligible mammalian toxicity of unencapsulated MFEO (LD50 = 14,289.32 µL/kg body weight) and MFEO loaded chitosan nanoemulsion (LD50 = 9231.89 µL/kg body weight) as revealed through favorable safety profile recommend the industrial significance of nanoencapsulated MFEO as an effective green alternative to environmentally hazardous synthetic pesticides for protection of food commodities during storage.


Assuntos
Aflatoxinas/antagonistas & inibidores , Antifúngicos/farmacologia , Myristica/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Aspergillus flavus/efeitos dos fármacos , Germinação/efeitos dos fármacos , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Oryza/efeitos dos fármacos , Oryza/microbiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/efeitos dos fármacos , Sementes/microbiologia
9.
Nat Prod Res ; 34(11): 1611-1615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30449163

RESUMO

The study reports chemically characterised Myristica fragrans essential oil (MFEO) as plant based food preservative against fungal and aflatoxin B1 (AFB1) contamination of scented rice varieties. The chemical profile of MFEO revealed elemicin (27.08%), myristicine (21.29%) and thujanol (18.55%) as major components. The minimum inhibitory and minimum aflatoxin inhibitory concentrations of MFEO were 2.75 and 1.5 mg/ml, respectively. The MFEO was efficacious against a broad spectrum of food deteriorating fungi. MFEO caused decrease in ergosterol content of fungal plasma membrane and enhanced leakage of cellular ions, depicting plasma membrane as the site of action. The MFEO caused reduction in cellular methylglyoxal content, the aflatoxin inducer. This is the first report on MFEO as aflatoxin suppressor. The essential oil may be recommended as plant based food preservative after large scale trials and reduction in methylglyoxal suggests its application for development of aflatoxin resistant varieties through green transgenics.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Myristica/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Oryza/microbiologia , Aflatoxina B1 , Aflatoxinas/antagonistas & inibidores , Aflatoxinas/metabolismo , Antifúngicos/química , Aspergillus flavus/metabolismo , Cladosporium/efeitos dos fármacos , Ergosterol/metabolismo , Contaminação de Alimentos , Conservantes de Alimentos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Aldeído Pirúvico/metabolismo
10.
Food Chem Toxicol ; 111: 102-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29126800

RESUMO

The study reports efficacy of Illicium verum essential oil (IvEO) against food borne moudls and its nanoencapsulation for enhancing antifungal and antiaflatoxigenic potency. Chemical characterization of the IvEO showed anethole (89.12%) as major compound followed by estragole (4.859%). The IvEO showed broad fungitoxic spectrum against common food borne moulds. It's minimum inhibitory concentration (MIC) and minimum aflatoxin B1 inhibitory concentration (MAIC) against aflatoxigenic strain Aspergillus flavus LHP-PV-1 were 0.7, and 0.5 µL/mL respectively. Morphological observations of treatment sets by SEM and TEM along with decrease in ergosterol content and enhanced leakage of Ca2+, K+ and Mg2+ ions denoted fungal cell membrane as site of action. The IvEO showed promising free radical scavenging activity and favourable safety profile with high LD50 value on mice. The IvEO also exhibited considerable protection of Pistacia vera from fungal contamination and complete protection from aflatoxin B1 contamination in storage containers. Nanoencapsulated IvEO in gel form and lyophilized form exhibited enhanced efficacy as fungal inhibitor and aflatoxin suppressor. The chemically characterised IvEO may be recommended as plant based preservative having favourable safety and its nanocapsules may be of industrial significance as shelf life enhancer of food items. This is the first report on in situ antiaflatoxigenic efficacy and nanoencapsulation of IvEO.


Assuntos
Aflatoxina B1/química , Conservantes de Alimentos/farmacologia , Illicium/química , Óleos de Plantas/farmacologia , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/ultraestrutura , Conservantes de Alimentos/química , Radicais Livres , Fungos/efeitos dos fármacos , Camundongos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Pistacia/microbiologia , Extratos Vegetais/farmacologia , Óleos de Plantas/química
11.
Food Chem Toxicol ; 106(Pt A): 175-184, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28552513

RESUMO

The study reports Mentha cardiaca essential oil (EO) as plant based preservative against fungal and aflatoxin contamination of stored dry fruits. Mycoflora analysis of the dry fruits revealed Aspergillus favus LHP-PV-1 as the most aflatoxigenic isolate with highest Aflatoxin B1 content. M. cardiaca EO showed broad fungitoxic spectrum inhibiting the tested moulds contaminating dry fruits. It's minimum inhibitory concentration (MIC), minimum aflatoxin inhibitory concentration (MAIC) and minimum fungicidal concentration (MFC) against A. favus LHP-PV-1 were recorded to be 1.25, 1.0 and 2.25 µL/mL respectively. The EO caused decrease in ergosterol content and enhanced leakage of Ca2+, K+ and Mg2+ ions from treated fungal cells, depicting fungal plasma membrane as the site of antifungal action. The EO showed promising DPPH free radical scavenging activity (IC50 value:15.89 µL/mL) and favourable safety profile with LD50 value (7133.70 mg/kg body wt.) when estimated through acute oral toxicity on mice. Carvone (61.62%) was recorded as the major component of the oil during chemical characterisation through GC-MS. Based on strong antifungal, antiaflatoxigenic and antioxidant potential, the chemically characterised M. cardiaca EO may be recommended as safe plant based preservative and shelf life enhancer of food items. This is the first report on antifungal and antiaflatoxigenic activity of M. cardiaca EO.


Assuntos
Aflatoxinas/metabolismo , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Conservantes de Alimentos/farmacologia , Mentha/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Aflatoxinas/análise , Antifúngicos/química , Aspergillus flavus/metabolismo , Conservação de Alimentos , Conservantes de Alimentos/química , Inocuidade dos Alimentos , Frutas/microbiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Extratos Vegetais/química
12.
Protoplasma ; 253(3): 647-653, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26338202

RESUMO

The present study reports in vivo antifungal and antiaflatoxigenic efficacy of Mentha spicata essential oil (EO) against toxigenic Aspergillus flavus strain LHP(C)-D6 in chickpea food system up to 12 months of storage. In addition, the mode of antifungal action of EO was also determined to understand the mechanism of fungal growth inhibition. The in vivo study with different concentrations of M. spicata EO showed dose-dependent decrease in fungal colony count as well as aflatoxin B1 concentration. The EO caused >50% protection in inoculated sets and >70% protection in uninoculated sets of chickpea food system against A. flavus at 1.0 µL mL(-1) air concentration. However, at the same concentration, EO caused 100% inhibition to aflatoxin B1 production in both sets when analyzed through high-performance liquid chromatography (HPLC). The antifungal target of EO in fumigated cells of A. flavus was found to be the plasma membrane when analyzed through electron microscopic observations and ions leakage test. The EO fumigated chickpea seeds showed 100% seed germination and seedling growth after 12 months of storage. Based on these observations, M. spicata EO can be recommended as plant-based preservative for safe protection of food commodities during storage conditions against fungal and most importantly mycotoxin contaminations.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Cicer/microbiologia , Mentha spicata/química , Óleos Voláteis/farmacologia , Aflatoxinas/metabolismo , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Cicer/efeitos dos fármacos , Cicer/metabolismo , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Germinação/efeitos dos fármacos , Óleos de Plantas/farmacologia , Sementes/efeitos dos fármacos
13.
J Photochem Photobiol B ; 154: 89-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26700425

RESUMO

The responses of wheat seedling treated with silicon (Si; 10 µM) and lead (Pb; 100 µM) for 7 days have been investigated by analyzing growth, Pb uptake, chlorophyll fluorescence, oxidative stress, antioxidants and nutrients regulation. Results indicated that, Pb significantly (P<0.05) declined growth of seedlings which was accompanied by uptake of Pb. Under Pb stress, fluorescence parameters: Fv/Fm ratio and qP were significantly (P<0.05) decreased while NPQ was increased. Si addition alleviated Pb-induced decrease in growth and alterations in photosynthesis, and also significantly (P<0.05) lowered Pb uptake. Under Pb treatment, oxidative stress markers: hydrogen peroxide and lipid peroxidation were enhanced while DPPH(•) scavenging capacity and total phenolic compounds (TPCs) were decreased significantly, however, Si addition improved the status of antioxidants. The non-protein thiols (NP-SH) showed enhanced level under Pb stress. Pb stress considerably disturbed status of the nutrients as decrease in Ca, P, Mg, Zn and Ni contents while an increase in K, S, B, Cu, Fe, Mn and Na contents were noticed. Si addition maintained status of all the nutrients remarkably. The quickest method of element analysis: LIBS spectra revealed significantly lower uptake of Pb in seedlings grown under Si and Pb combination and same was correlated with the data of AAS. Overall results pointed out that excess Pb uptake disturbed status of nutrients, photosynthetic performance, antioxidant capacity, hence severe oxidative damage to lipids occurred. Further, Si supplementation successfully regulated these parameters by inhibiting Pb uptake hence maintained growth of wheat seedlings. Similar pattern of data recorded by the LIBS, AAS and ICAP-AES confirmed that LIBS may be one of the promising and authentic tools to monitor the mineral and metal distribution in the plants without hampering or disturbing the environment due to its eco-friendly and non-invasive nature.


Assuntos
Chumbo/toxicidade , Silício/toxicidade , Triticum/efeitos dos fármacos , Triticum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Clorofila/química , Clorofila/metabolismo , Lasers , Chumbo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Fenóis/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Silício/metabolismo , Triticum/crescimento & desenvolvimento
14.
Int J Food Microbiol ; 142(1-2): 114-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20621374

RESUMO

The study investigates fungal contamination in some dry fruits, spices and areca nut and evaluation of the essential oil (EO) of Piper betle var. magahi for its antifungal, antiaflatoxigenic and antioxidant properties. A total of 1651 fungal isolates belonging to 14 species were isolated from the samples and Aspergillus was recorded as the dominant genus with 6 species. Eleven aflatoxin B(1) (AFB(1)) producing strains of A. flavus were recorded from the samples. Eugenol (63.39%) and acetyleugenol (14.05%) were the major components of 32 constituents identified from the Piper betle EO through GC and GC-MS analysis. The minimum inhibitory concentration (MIC) of P. betle EO was found 0.7 microl/ml against A.flavus. The EO reduced AFB(1) production in a dose dependent manner and completely inhibited at 0.6 microl/ml. This is the first report on efficacy of P. betle EO as aflatoxin suppressor. EO also exhibited strong antioxidant potential as its IC(50) value (3.6 microg/ml) was close to that of ascorbic acid (3.2 microg/ml) and lower than that of the synthetic antioxidants such as butylated hydroxytouene (BHT) (7.4 microg/ml) and butylated hydroxyanisole (BHA) (4.5 microg/ml). P. betle EO thus exhibited special merits possessing antifungal, aflatoxin suppressive and antioxidant characters which are desirable for an ideal preservative. Hence, its application as a plant based food additive in protection and enhancement of shelf life of edible commodities during storage and processing is strongly recommended in view of the toxicological implications by synthetic preservatives.


Assuntos
Aflatoxinas/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Microbiologia de Alimentos , Fungos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Piper betle/química , Óleos de Plantas/farmacologia , Antifúngicos/análise , Antioxidantes/análise , Análise de Alimentos , Conservação de Alimentos , Fungos/isolamento & purificação , Fungos/metabolismo , Óleos Voláteis/análise , Óleos de Plantas/análise
15.
Mycopathologia ; 170(3): 195-202, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20401550

RESUMO

Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B(1) production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B(1) production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B(1) production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B(1) suppressors in post-harvest processing of herbal samples.


Assuntos
Aflatoxinas/metabolismo , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Citrus/química , Cymbopogon/química , Óleos Voláteis/farmacologia , Antifúngicos/isolamento & purificação , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Liliaceae/microbiologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/isolamento & purificação , Raízes de Plantas/microbiologia
16.
Food Chem Toxicol ; 48(2): 539-43, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19909781

RESUMO

The study deals with the efficacy of Ocimum sanctum essential oil (EO) and its major component, eugenol against the fungi causing biodeterioration of food stuffs during storage. O. sanctum EO and eugenol were found efficacious in checking growth of Aspergillus flavus NKDHV8; and, their minimum inhibitory concentrations (MICs) were recorded as 0.3 and 0.2 microl ml(-1), respectively. The O. sanctum EO and eugenol also inhibited the aflatoxin B1 production completely at 0.2 and 0.1 microl ml(-1), respectively. Both of these were found superior over some prevalent synthetic antifungals and exhibited broad fungitoxic spectrum against 12 commonly occurring fungi. The LD50 value of O. sanctum EO on mice was found to be 4571.43 microl kg(-1) suggesting its non-mammalian toxic nature. The findings of present study reveals the possible exploitation of O. sanctum EO and eugenol as plant based safe preservatives against fungal spoilage of food stuffs during storage.


Assuntos
Antifúngicos/química , Eugenol/química , Ocimum , Óleos de Plantas/química , Aflatoxina B1/metabolismo , Animais , Antifúngicos/toxicidade , Aspergillus/genética , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Eugenol/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Dose Letal Mediana , Camundongos , Testes de Sensibilidade Microbiana , Óleos de Plantas/toxicidade
17.
Int J Food Microbiol ; 135(2): 165-70, 2009 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19726096

RESUMO

The present study deals with evaluation of antifungal properties of Lippia alba essential oil (EO) and two of its monoterpene aldehyde constituents against legume-contaminating fungi. Seventeen different fungal species were isolated from 11 varieties of legumes, and aflatoxigenic isolates of Aspergillus flavus were identified. Hydrodistillation method was used to extract the EO from fresh leaves. The GC and GC-MS analysis of EO revealed the monoterpene aldehydes viz. geranial (22.2%) and neral (14.2%) as the major components. The antifungal activity of EO, geranial and neral was evaluated by contact assay on Czapek's-dox agar. The EO (0.25-1 microL/mL) and its two constituents (1 microL/mL) showed remarkable antifungal effects against all the fungal isolates (growth inhibition range 32.1-100%). Their minimal inhibitory (MIC) and fungicidal (MFC) concentrations for A. flavus were lower than those of the systemic fungicide Bavistin. Aflatoxin B(1) (AFB(1)) production by three isolates of A. flavus was strongly inhibited even at the lower fungistatic concentration of EO and its constituents. There was no adverse effect of treatments on seed germination, and rather, there was enhanced seedling growth in the EO-treated seeds. It is concluded that L. alba EO and two of its constituents could be safely used as effective preservative for food legumes against fungal infections and mycotoxins.


Assuntos
Aflatoxina B1/biossíntese , Antifúngicos/farmacologia , Fabaceae/microbiologia , Lippia/química , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Monoterpenos Acíclicos , Aldeídos/farmacologia , Aspergillus/isolamento & purificação , Benzimidazóis , Carbamatos , Fabaceae/efeitos dos fármacos , Fabaceae/crescimento & desenvolvimento , Microbiologia de Alimentos , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Folhas de Planta , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA