Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomaterials ; 35(1): 509-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24099711

RESUMO

The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infection has significantly increased. Generally, the success of this bacterium as a pathogen is attributed to its ability to adhere to surfaces and remain there, under the protection of an extracellular matrix known as biofilm. To combat MRSA with regular doses of vancomycin, efforts are continuously underway to increase its effectiveness. A promising technique is to use combinational therapeutics. In vitro experiments showed that farnesol can be used as an adjuvant with conventional antibiotics. Farnesol is a natural sesquiterpenoid and quorum-sensing molecule. The biggest obstacle to using this concept is that farnesol is highly water insoluble. This compromises its bioavailability if it were to be used along with vancomycin at the site of infection when the treatment needs to be administered in vivo. Herein we designed an efficient therapeutic strategy for the simultaneous delivery of both antibiotic and adjuvant in order to treat MRSA infections. We demonstrate that sufficient quantities of both vancomycin and farnesol can be incorporated into sol-gel silica applied as thin films on an implant surface. The incorporation of the hydrophobic farnesol does not affect the stability of the thin films and neither does it affect the controlled release of vancomycin. The data demonstrate the potent adjuvant effect of farnesol on vancomycin in inhibiting MRSA infection. In vitro experiments show the complete inhibition (10(6) fold reduction in growth compared to control) of methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) when the ratio of vancomycin to farnesol in the sol-gel silica films is optimized. The local delivery of antibiotics minimizes the need for systemic antibiotics. The incorporation of vancomycin and farnesol into thin sol-gel films represents a new treatment paradigm for the topical delivery of antibiotics with adjuvant. The potential clinical benefits are significant and include avoiding the need for revision surgery, preventing surgical site infection and controlling healthcare costs.


Assuntos
Antibacterianos/farmacologia , Farneseno Álcool/farmacologia , Géis , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Dióxido de Silício/farmacologia , Vancomicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana
2.
Biomed Mater ; 3(3): 034111, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18689928

RESUMO

Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 degrees C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO(4) and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 microm and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue-like matrix. The addition of BG to the CPCs to create composite CPCs obviously is at the basis of this altered behavior of the cements. All data combined are useful for the design and optimization of degradable implant materials for use in bone tissue repair and regeneration procedures.


Assuntos
Líquidos Corporais/química , Cimentos Ósseos/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Cristalização/métodos , Vidro/química , Absorção , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA