Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807459

RESUMO

BACKGROUND: Oral iron supplementation causes gastrointestinal side effects. Short-term alterations in dietary iron exacerbate inflammation and alter the gut microbiota, in murine models of colitis. Patients typically take supplements for months. We investigated the impact of long-term changes in dietary iron on colitis and the microbiome in mice. METHODS: We fed mice chow containing differing levels of iron, reflecting deficient (100 ppm), normal (200 ppm), and supplemented (400 ppm) intake for up to 9 weeks, both in absence and presence of dextran sodium sulphate (DSS)-induced chronic colitis. We also induced acute colitis in mice taking these diets for 8 weeks. Impact was assessed (i) clinically and histologically, and (ii) by sequencing the V4 region of 16S rRNA. RESULTS: In mice with long-term changes, the iron-deficient diet was associated with greater weight loss and histological inflammation in the acute colitis model. Chronic colitis was not influenced by altering dietary iron however there was a change in the microbiome in DSS-treated mice consuming 100 ppm and 400 ppm iron diets, and control mice consuming the 400 ppm iron diet. Proteobacteria levels increased significantly, and Bacteroidetes levels decreased, in the 400 ppm iron DSS group at day-63 compared to baseline. CONCLUSIONS: Long-term dietary iron alterations affect gut microbiota signatures but do not exacerbate chronic colitis, however acute colitis is exacerbated by such dietary changes. More work is needed to understand the impact of iron supplementation on IBD. The change in the microbiome, in patients with colitis, may arise from the increased luminal iron and not simply from colitis.


Assuntos
Colite/metabolismo , Sobrecarga de Ferro/fisiopatologia , Ferro/metabolismo , Anemia Ferropriva , Animais , Bactérias/genética , Colite/fisiopatologia , Colo/patologia , Sulfato de Dextrana/farmacologia , Dieta , Suplementos Nutricionais/efeitos adversos , Modelos Animais de Doenças , Disbiose/etiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Inflamação , Doenças Inflamatórias Intestinais/patologia , Ferro da Dieta/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , RNA Ribossômico 16S/genética
2.
J Ethnopharmacol ; 269: 113735, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359865

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dilodendron bipinnatum (Sapindaceae) stem bark decoction and macerate were used to treat uterine inflammation, pain in general, dermatitis and bone fractures. These homemade preparations also have diuretic, stimulant, expectorants and sedative effects and are effective in treating worm infections in the Brazilian Pantanal population. Our previous research confirmed the anti-inflammatory activity of the hydroethanolic extract of inner stem bark of D. bipinnatum (HEDb). AIM: This work aimed to investigate the efficacy of HEDb in ameliorating experimental colitis in rats and to elucidate the possible mechanisms involved in the anti-ulcerative colitis properties of HEDb in rats and Caco-2 cell line. MATERIALS AND METHODS: The effects on cell viability, IL-8 and TNF-α in human colon adenocarcinoma (Caco-2) were determined by flow cytometer and ELISA. Wistar rats (n = 6-7) were orally gavaged with, vehicle (0.9% saline), HEDb at doses of 20, 100 or 500 mg/kg, or mesalazine at a dose of 500 mg/kg, at 48, 24 and 1 h prior to the administration of trinitrobenzene sulfonic acid via rectal administration to induce colitis. The anti-inflammatory effects of HEDb were assessed macroscopically, by myeloperoxidase (MPO) activity and for glutathione (GSH) concentration in the colon. Additionally, colonic histopathological analyses of UC severity were conducted by different staining methods (H&E, PAS and toluidine blue). Pro-inflammatory cytokines TNF-α and IL-1ß were quantified in colonic tissue by ELISA and colonic expressions of COX-2 and IL-17 were analyzed by western blotting. RESULTS: HEDb was shown to be non-cytotoxic with mean viability of 80% in Caco-2 cells. HEDb pre-treatments of 1, 5 or 20 µg/mL significantly reduced TNF-α production in Caco-2 cells by 21.8% (p < 0.05), 60.5 and 82.1% (p < 0.001) respectively following LPS treatment compared to LPS alone. However, no change in IL-8 production was observed. HEDb pre-treatment of rats subjected to TNBS significantly (p < 0.001) reduced colonic lesion score. Higher doses (100 and 500 mg/kg) caused a sharp downregulation of haemorrhagic damage, leukocyte infiltration, edema and restoration of mucus production. Moreover, mast cell degranulation was inhibited. Colonic MPO activity was reduced following all doses of HEDb, reaching 51.1% ± 1.51 (p < 0.05) with the highest dose. GSH concentration was restored by 58% and 70% following 100 and 500 mg/kg of HEDb, respectively. The oral treatment of HEDb at doses 20, 100 and 500 mg/kg decreased the concentrations of TNF-α and IL-1ß at all doses in comparison to vehicle treated control. In addition, HEDb inhibited the COX-2 and IL-17 expressions with maximal effect at 500 mg/kg (60.3% and 65% respectively; p < 0.001). In all trials, the effect of HEDb at all doses being 20, 100 and 500 mg/kg was statistically comparable to mesalazine (500 mg/kg). CONCLUSIONS: HEDb reduces colonic damage in the TNBS colitis model and relieves oxidative and inflammatory events, at least in part, by increasing mucus production, reducing leukocyte migration and reducing TNF-α (in vivo and in vitro), IL-1ß, IL-17 and COX-2 expression. Therefore, HEDb requires further investigation as a candidate for treating IBD.


Assuntos
Antioxidantes/farmacologia , Colite Ulcerativa/prevenção & controle , Muco/metabolismo , Casca de Planta/química , Extratos Vegetais/farmacologia , Sapindaceae/química , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Brasil , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/prevenção & controle , Glutationa/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/toxicidade , Mastócitos/efeitos dos fármacos , Peroxidase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Ratos Wistar , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS One ; 13(10): e0202460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308045

RESUMO

Inflammatory bowel disease (IBD) is associated with anaemia and oral iron replacement to correct this can be problematic, intensifying inflammation and tissue damage. The intestinal microbiota also plays a key role in the pathogenesis of IBD, and iron supplementation likely influences gut bacterial diversity in patients with IBD. Here, we assessed the impact of dietary iron, using chow diets containing either 100, 200 or 400 ppm, fed ad libitum to adult female C57BL/6 mice in the presence or absence of colitis induced using dextran sulfate sodium (DSS), on (i) clinical and histological severity of acute DSS-induced colitis, and (ii) faecal microbial diversity, as assessed by sequencing the V4 region of 16S rRNA. Increasing or decreasing dietary iron concentration from the standard 200 ppm exacerbated both clinical and histological severity of DSS-induced colitis. DSS-treated mice provided only half the standard levels of iron ad libitum (i.e. chow containing 100 ppm iron) lost more body weight than those receiving double the amount of standard iron (i.e. 400 ppm); p<0.01. Faecal calprotectin levels were significantly increased in the presence of colitis in those consuming 100 ppm iron at day 8 (5.94-fold) versus day-10 group (4.14-fold) (p<0.05), and for the 400 ppm day-8 group (8.17-fold) versus day-10 group (4.44-fold) (p<0.001). In the presence of colitis, dietary iron at 400 ppm resulted in a significant reduction in faecal abundance of Firmicutes and Bacteroidetes, and increase of Proteobacteria, changes which were not observed with lower dietary intake of iron at 100 ppm. Overall, altering dietary iron intake exacerbated DSS-induced colitis; increasing the iron content of the diet also led to changes in intestinal bacteria diversity and composition after colitis was induced with DSS.


Assuntos
Anemia/tratamento farmacológico , Colite/dietoterapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Ferro da Dieta/administração & dosagem , Ferro/metabolismo , Administração Oral , Anemia/microbiologia , Anemia/patologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , RNA Ribossômico 16S/genética
4.
Pharmacol Ther ; 172: 181-194, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28132905

RESUMO

Adverse drug reactions affecting the gastrointestinal (GI) tract are a serious burden on patients, healthcare providers and the pharmaceutical industry. GI toxicity encompasses a range of pathologies in different parts of the GI tract. However, to date no specific mechanistic diagnostic/prognostic biomarkers or translatable pre-clinical models of GI toxicity exist. This review will cover the current knowledge of GI ADRs, existing biomarkers and models with potential application for toxicity screening/monitoring. We focus on the current gaps in our knowledge, the potential opportunities and recommend that a systematic approach is needed to identify mechanism-based GI biomarkers with potential for clinical translation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Gastroenteropatias/induzido quimicamente , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Desenho de Fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Gastroenteropatias/fisiopatologia , Humanos , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA