Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243312

RESUMO

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Assuntos
Alquil e Aril Transferases/metabolismo , Biocatálise , Vias Biossintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrocarbonetos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidade por Substrato , Valeriana/genética
2.
Plant J ; 66(4): 591-602, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21284755

RESUMO

Aromatic L-amino acid decarboxylases (AADCs) are key enzymes operating at the interface between primary and secondary metabolism. The Arabidopsis thaliana genome contains two genes, At2g20340 and At4g28680, encoding pyridoxal 5'-phosphate-dependent AADCs with high homology to the recently identified Petunia hybrida phenylacetaldehyde synthase involved in floral scent production. The At4g28680 gene product was recently biochemically characterized as an L-tyrosine decarboxylase (AtTYDC), whereas the function of the other gene product remains unknown. The biochemical and functional characterization of the At2g20340 gene product revealed that it is an aromatic aldehyde synthase (AtAAS), which catalyzes the conversion of phenylalanine and 3,4-dihydroxy-L-phenylalanine to phenylacetaldehyde and dopaldehyde, respectively. AtAAS knock-down and transgenic AtAAS RNA interference (RNAi) lines show significant reduction in phenylacetaldehyde levels and an increase in phenylalanine, indicating that AtAAS is responsible for phenylacetaldehyde formation in planta. In A. thaliana ecotype Columbia (Col-0), AtAAS expression was highest in leaves, and was induced by methyl jasmonate treatment and wounding. Pieris rapae larvae feeding on Col-0 leaves resulted in increased phenylacetaldehyde emission, suggesting that the emitted aldehyde has a defensive activity against attacking herbivores. In the ecotypes Sei-0 and Di-G, which emit phenylacetaldehyde as a predominant flower volatile, the highest expression of AtAAS was found in flowers and RNAi AtAAS silencing led to a reduction of phenylacetaldehyde formation in this organ. In contrast to ecotype Col-0, no phenylacetaldehyde accumulation was observed in Sei-0 upon wounding, suggesting that AtAAS and subsequently phenylacetaldehyde contribute to pollinator attraction in this ecotype.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Folhas de Planta/metabolismo , Tirosina Descarboxilase/metabolismo , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetatos/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Ciclopentanos/farmacologia , Comportamento Alimentar , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Insetos/patogenicidade , Larva/patogenicidade , Odorantes , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/parasitologia , Pólen/genética , Pólen/metabolismo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Tirosina Descarboxilase/genética , Compostos Orgânicos Voláteis/metabolismo , Volatilização
3.
Methods Mol Biol ; 553: 329-43, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19588114

RESUMO

Plants communicate with their surrounding ecosystems using a diverse array of volatile metabolites that are indicative of the physiological status of the emitter. A variety of systems have been adapted to capture, analyze, identify, and quantify airborne metabolites released by plants. Metabolomic experiments typically involve four steps: sample collection, preparation, product separation, and data analysis. To date, two different types of headspace sampling, static and dynamic, are widely used for volatile metabolome investigation. For static headspace analysis, solid-phase microextraction (SPME) is used to sample volatiles while push and pull as well as closed-loop stripping methods are used for dynamic headspace sampling. After collection, volatile blends are most efficiently and routinely separated prior to analysis using gas chromatography (GC). Sample preparation is simplified because derivatization is not needed with volatile metabolites. GC coupled to detection by electron impact mass spectrometry (EI-MS) provides high chromatographic resolution, sensitivity, compound-specific detection, quantitation, and the potential to identify unknowns by characteristic and reproducible fragmentation spectra in addition to retention time. A variety of resources can be used to identify unknown compounds in a given volatile sample including >600,000 compounds with known mass spectra catalogued in searchable mass spectral libraries.


Assuntos
Metabolômica/métodos , Extratos Vegetais/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa/métodos , Flores/química , Flores/metabolismo , Petunia/química , Petunia/metabolismo , Extratos Vegetais/metabolismo , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Orgânicos Voláteis/metabolismo , Volatilização
4.
Plant J ; 59(2): 256-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19292760

RESUMO

Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.


Assuntos
Antirrhinum/enzimologia , Benzaldeído Desidrogenase (NADP+)/metabolismo , Ácido Benzoico/metabolismo , Proteínas de Plantas/metabolismo , Antirrhinum/genética , Benzaldeído Desidrogenase (NADP+)/genética , DNA Complementar/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Curr Opin Biotechnol ; 19(2): 181-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18394878

RESUMO

Metabolic engineering of the volatile spectrum offers enormous potential for plant improvement because of the great contribution of volatile secondary metabolites to reproduction, defense and food quality. Recent advances in the identification of the genes and enzymes responsible for the biosynthesis of volatile compounds have made this metabolic engineering highly feasible. Notable successes have been reported in enhancing plant defenses and improving scent and aroma quality of flowers and fruits. These studies have also revealed challenges and limitations which will be likely surmounted as our understanding of plant volatile network improves.


Assuntos
Engenharia Genética/métodos , Óleos Voláteis/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Modelos Biológicos , Óleos Voláteis/química , Óleos de Plantas/química , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Volatilização
6.
Artigo em Inglês | MEDLINE | ID: mdl-15711966

RESUMO

Floral scent is used by pollinators during foraging to identify and discriminate among flowers. The ability to discriminate among scents may depend on both scent intensity and the ratios of the concentrations of the volatile compounds of a complex mixture rather than on the presence of a few compounds. We used four scent-emitting cultivars of snapdragon (Antirrhinum majus) to test this hypothesis by examining the ability of honeybees to differentiate among their scents. Each cultivar produced three monoterpenes (myrcene, E-beta-ocimene, and linalool) and five phenylpropanoids (methylbenzoate, acetophenone, dimethoxytoluene, cis-methylcinnamate, and trans-methylcinnamate). Cultivars were reliably classified by their scents in a canonical discriminant analysis. Honeybees were unable to discriminate among the scents of flowers of the same cultivar in our assay. The ability of honeybees to discriminate among the scents of different cultivars was a function of the intensity of the floral scent. Discrimination was also correlated to the distance among the scents described by the discriminant analysis; the cultivars that had the greatest differences observed in the discriminant analysis were the easiest to discriminate. Our results show that honeybees are capable of using all of the floral volatiles to discriminate subtle differences in scent.


Assuntos
Antirrhinum/metabolismo , Abelhas/fisiologia , Fatores Quimiotáticos/farmacologia , Quimiotaxia/fisiologia , Limiar Diferencial/fisiologia , Odorantes , Olfato/fisiologia , Animais , Antirrhinum/classificação , Abelhas/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Fatores Quimiotáticos/metabolismo , Quimiotaxia/efeitos dos fármacos , Limiar Diferencial/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Especificidade da Espécie
7.
Plant Cell ; 15(12): 2992-3006, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14630969

RESUMO

The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after pollen tubes reach the ovary, a process that takes between 35 and 40 h in snapdragon and approximately 32 h in petunia. This postpollination decrease in emission is not triggered by pollen deposition on the stigma. Petunia and snapdragon both synthesize methylbenzoate from benzoic acid and S-adenosyl-l-methionine (SAM); however, they use different mechanisms to downregulate its production after pollination. In petunia, expression of the gene responsible for methylbenzoate synthesis is suppressed by ethylene. In snapdragon, the decrease in methylbenzoate emission is the result of a decrease in both S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT) activity and the ratio of SAM to S-adenosyl-l-homocysteine ("methylation index") after pollination, although the BAMT gene also is sensitive to ethylene.


Assuntos
Antirrhinum/fisiologia , Benzoatos/metabolismo , Flores/fisiologia , Metiltransferases/genética , Petunia/fisiologia , Proteínas de Plantas/genética , Antirrhinum/genética , Ácido Benzoico/metabolismo , DNA Complementar/química , DNA Complementar/genética , Etilenos/farmacologia , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metilação , Metiltransferases/metabolismo , Dados de Sequência Molecular , Odorantes/análise , Petunia/genética , Proteínas de Plantas/metabolismo , Reprodução/fisiologia , S-Adenosilmetionina/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA