Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 272, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022935

RESUMO

BACKGROUND: Botanical substances such as essential oils (EOs) have demonstrated insecticidal properties and are a valid option for vector control. However, free EOs are unreliable as mosquito larvicides due their easy degradation by environmental exposure to ultraviolet light and higher temperatures. Here, we assessed the efficacy of a mosquito larvicide based on orange oil in a yeast-based delivery system against Aedes aegypti strains with different resistance status towards chemical neurotoxic insecticides. This larvicide preparation was physicochemically characterized in a previous report. METHODS: Larvae of four Ae. aegypti strains from different regions of Brazil and different resistance profiles for deltamethrin (pyrethroid) and temephos (organophosphate) were tested against yeast-encapsulated orange oil (YEOO) in laboratory conditions for measurement of LC50 and LC90 values. The same assays were performed with the Belo Horizonte strain under environmental conditions (natural light and temperature). The resistance profiles of these strains were compared to the Rockefeller reference strain in all conditions. RESULTS: YEOO was found to be a highly active larvicide (LC50 < 50 mg/L) against all Ae. aegypti strains tested in both laboratory conditions (LC50 = 8.1-24.7 mg/L) and environmental conditions with natural light and temperature fluctuation (LC50 = 20.0-49.9 mg/L). Moreover, all strains were considered susceptible (RR < 5) to YEOO, considering resistance ratios calculated based on the Rockefeller strain. The resistance ratios were only higher than 2.5 for LC90-95 of Belo Horizonte in the laboratory, probably due the higher heterogeneity associated with older egg papers (> 5 months). CONCLUSION: YEOO demonstrates high larvicidal activity against Ae. aegypti strains with resistant phenotypes for deltamethrin (PY) and temephos (OP). This larvicidal activity suggests the potential for the development of YEOO as an alternative intervention to synthetic insecticides in integrated vector management programs, for populations with resistance to commonly used insecticides.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos de Plantas/farmacologia , Saccharomyces cerevisiae/química , Aedes/classificação , Animais , Brasil , Controle de Mosquitos/métodos , Óleos Voláteis/farmacologia , Piretrinas/farmacologia , Temefós/farmacologia
2.
Methods ; 195: 57-71, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33453392

RESUMO

SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.


Assuntos
Antivirais/administração & dosagem , Proteases 3C de Coronavírus/antagonistas & inibidores , Sistemas de Liberação de Medicamentos/normas , Indóis/administração & dosagem , Maleimidas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/metabolismo , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/normas , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Indóis/química , Indóis/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Simulação de Acoplamento Molecular/métodos , Simulação de Acoplamento Molecular/normas , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , SARS-CoV-2/química
3.
Parasit Vectors ; 13(1): 19, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931883

RESUMO

BACKGROUND: Effective mosquito control approaches incorporate both adult and larval stages. For the latter, physical, biological, and chemical control have been used with varying results. Successful control of larvae has been demonstrated using larvicides including insect growth regulators, e.g. the organophosphate temephos, as well as various entomopathogenic microbial species. However, a variety of health and environmental issues are associated with some of these. Laboratory trials of essential oils (EO) have established the larvicidal activity of these substances, but there are currently no commercially available EO-based larvicides. Here we report on the development of a new approach to mosquito larval control using a novel, yeast-based delivery system for EO. METHODS: Food-grade orange oil (OO) was encapsulated into yeast cells following an established protocol. To prevent environmental contamination, a proprietary washing strategy was developed to remove excess EO that is adsorbed to the cell exterior during the encapsulation process. The OO-loaded yeast particles were then characterized for OO loading, and tested for efficacy against Aedes aegypti larvae. RESULTS: The composition of encapsulated OO extracted from the yeast microparticles was demonstrated not to differ from that of un-encapsulated EO when analyzed by high performance liquid chromatography. After lyophilization, the oil in the larvicide comprised 26-30 percentage weight (wt%), and is consistent with the 60-65% reduction in weight observed after the drying process. Quantitative bioassays carried with Liverpool and Rockefeller Ae. aegypti strains in three different laboratories presented LD50 of 5.1 (95% CI: 4.6-5.6) to 27.6 (95% CI: 26.4-28.8) mg/l, for L1 and L3/L4 mosquito larvae, respectively. LD90 ranged between 18.9 (95% CI: 16.4-21.7) mg/l (L1 larvae) to 76.7 (95% CI: 69.7-84.3) mg/l (L3/L4 larvae). CONCLUSIONS: The larvicide based on OO encapsulated in yeast was shown to be highly active (LD50 < 50 mg/l) against all larval stages of Ae. aegypti. These results demonstrate its potential for incorporation in an integrated approach to larval source management of Ae. aegypti. This novel approach can enable development of affordable control strategies that may have significant impact on global health.


Assuntos
Aedes/efeitos dos fármacos , Encapsulamento de Células/métodos , Controle de Mosquitos/métodos , Óleos Voláteis/farmacologia , Animais , Química Verde , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Óleos de Plantas/farmacologia , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA