Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2226845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37369371

RESUMO

OBJECTIVE: The wound biofilm infections that develop tolerance to standard-of-care antimicrobial treatment has been increasing. The objective of this study was to demonstrate a proof-of-concept of mild magnetic nanoparticle (MNP)/alternating magnetic field (AMF) hyperthermia as an anti-biofilm therapy against multispecies biofilm infections. METHODS: Using both an in vitro cell culture and in vivo murine model of wound infection, we investigated whether MNP/AMF hyperthermia applied at a mild thermal dosage would be synergistically effective against dual species biofilm infection consisting of S. aureus and P. aeruginosa when combined with a broad-spectrum antibiotic, ciprofloxacin (CIP). RESULTS: The combined treatment of MNP/AMF hyperthermia and CIP to the wounds of diabetic mice (db/db mice) significantly reduced the CFU number of S. aureus and P. aeruginosa by 2-log and 3-log, respectively, compared to the untreated control group, whereas either mild MNP/AMF hyperthermia or CIP treatment alone had little effect on the eradication of both bacteria. Our gene microarray data obtained from the culture of S. aureus biofilm suggest that mild MNP/AMF could shift the expression of genes for cellular respiration from anaerobic fermentation to an aerobic glycolytic/tricarboxylic acid cycle (TCA) pathway, implicating that the beneficial effect of mild MNP/AMF hyperthermia on the increased susceptibility of biofilm bacteria to an antibiotic treatment is associated with an increased metabolic activity. CONCLUSION: Our results support the translational potential of mild MNP/AMF as an adjunctive therapy that can be combined with a broad-spectrum antibiotic treatment for the management of wound biofilm infections associated with multispecies bacteria.


Assuntos
Diabetes Mellitus Experimental , Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Staphylococcus aureus , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Fenômenos Magnéticos
2.
Nanomedicine ; 34: 102397, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33857686

RESUMO

The formation of beta-amyloid (Aß) plaques is a classical hallmark of Alzheimer's disease (AD) that is associated with the promotion of neuroinflammation and subsequent neurotoxicity. Given the limited therapeutic options for targeting and clearing Aß plaques in AD, there is an urgent need to develop effective approaches to reduce plaque accumulation. The objective of this study was to validate mild magnetic nanoparticle (MNP) hyperthermia technology as a strategy to clear Aß deposits and determine the impact on microglia functionality. Our results demonstrated that the heating of MNPs localized to Aß aggregates upon exposure to high frequency alternating magnetic field (AMF) was sufficient to disrupt Aß plaques, resulting in its fragmentation. Importantly, this could facilitate the phagocytic clearance of Aß as well as attenuate pro-inflammatory responses by human microglial cells. Our results support the feasibility of mild MNP/AMF hyperthermia as a new strategy for reducing beta-amyloid burdens in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Hipertermia Induzida/métodos , Magnetismo , Microglia/metabolismo , Nanopartículas , Placa Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular Transformada , Humanos , Microscopia Eletrônica de Varredura , Fagocitose
3.
Sci Rep ; 6: 37435, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886210

RESUMO

Melanocortin 4 receptor (MC4R) variants contribute to human obesity, and rats lacking functional MC4R (Mc4rK314X/K314X) are obese. We investigated the hypothesis that low energy expenditure (EE) and physical activity contribute to this obese phenotype in male rats, and determined whether lack of functional MC4R conferred protection from weight loss during 50% calorie restriction. Though Mc4rK314X/K314X rats showed low brown adipose Ucp1 expression and were less physically active than rats heterozygous for the mutation (Mc4r+/K314X) or wild-type (Mc4r+/+) rats, we found no evidence of lowered EE in Mc4rK314X/K314X rats once body weight was taken into account using covariance. Mc4rK314X/K314X rats had a significantly higher respiratory exchange ratio. Compared to Mc4r+/+ rats, Mc4rK314X/K314X and Mc4r+/K314X rats lost less lean mass during calorie restriction, and less body mass when baseline weight was accounted for. Limited regional overexpression of Mc3r was found in the hypothalamus. Although lower physical activity levels in rats with nonfunctional MC4R did not result in lower total EE during free-fed conditions, rats lacking one or two functional copies of Mc4r showed conservation of mass, particularly lean mass, during energy restriction. This suggests that variants affecting MC4R function may contribute to individual differences in the metabolic response to food restriction.


Assuntos
Tecido Adiposo Marrom/metabolismo , Peso Corporal/genética , Metabolismo Energético/genética , Hipotálamo/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Animais , Restrição Calórica/métodos , Expressão Gênica , Heterozigoto , Homozigoto , Masculino , Fenótipo , Condicionamento Físico Animal , Ratos , Ratos Transgênicos , Receptor Tipo 4 de Melanocortina/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA