Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
FEBS Lett ; 596(15): 1865-1870, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490366

RESUMO

Achieving gain-of-function phenotypes without inserting foreign DNA is an important challenge for plant biotechnologists. Here, we show that a gene can be brought under the control of a promoter from an upstream gene by deleting the intervening genomic sequence using dual-guide CRISPR/Cas9. We fuse the promoter of a nonessential photosynthesis-related gene to DIACYLGLYCEROL ACYLTRANSFERASE 2 (DGAT2) in the lipase-deficient sugar-dependent 1 mutant of Arabidopsis thaliana to drive ectopic oil accumulation in leaves. DGAT2 expression is enhanced more than 20-fold and the triacylglycerol content increases by around 30-fold. This deletion strategy offers a transgene-free route to engineering traits that rely on transcriptional gain-of-function, such as producing high lipid forage to increase the productivity and sustainability of ruminant farming.


Assuntos
Arabidopsis , Sistemas CRISPR-Cas , Arabidopsis/genética , Arabidopsis/metabolismo , Edição de Genes , Fusão Gênica , Genômica , Transgenes
2.
Proc Natl Acad Sci U S A ; 116(42): 20947-20952, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570578

RESUMO

Human milk fat substitute (HMFS) is a class of structured lipid that is widely used as an ingredient in infant formulas. Like human milk fat, HMFS is characterized by enrichment of palmitoyl (C16:0) groups specifically at the middle (sn-2 or ß) position on the glycerol backbone, and there is evidence that triacylglycerol (TAG) with this unusual stereoisomeric structure provides nutritional benefits. HMFS is currently made by in vitro enzyme-based catalysis because there is no appropriate biological alternative to human milk fat. Most of the fat currently used in infant formulas is obtained from plants, which exclude C16:0 from the middle position. In this study, we have modified the metabolic pathway for TAG biosynthesis in the model oilseed Arabidopsis thaliana to increase the percentage of C16:0 at the middle (vs. outer) positions by more than 20-fold (i.e., from ∼3% in wild type to >70% in our final iteration). This level of C16:0 enrichment is comparable to human milk fat. We achieved this by relocating the C16:0-specific chloroplast isoform of the enzyme lysophosphatidic acid acyltransferase (LPAT) to the endoplasmic reticulum so that it functions within the cytosolic glycerolipid biosynthetic pathway to esterify C16:0 to the middle position. We then suppressed endogenous LPAT activity to relieve competition and knocked out phosphatidylcholine:diacylglycerol cholinephosphotransferase activity to promote the flux of newly made diacylglycerol directly into TAG. Applying this technology to oilseed crops might provide a source of HMFS for infant formula.


Assuntos
Arabidopsis/genética , Substitutos da Gordura/química , Gorduras/química , Leite Humano/química , Óleos de Plantas/química , Sementes/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Substitutos da Gordura/metabolismo , Humanos , Fórmulas Infantis/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/química , Sementes/genética , Estereoisomerismo
3.
Sci Rep ; 8(1): 17346, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478395

RESUMO

Seeds exhibit wide variation in the fatty acid composition of their storage oil. However, the genetic basis of this variation is only partially understood. Here we have used a multi-parent advanced generation inter-cross (MAGIC) population to study the genetic control of fatty acid chain length in Arabidopsis thaliana seed oil. We mapped four quantitative trait loci (QTL) for the quantity of the major very long chain fatty acid species 11-eicosenoic acid (20:1), using multiple QTL modelling. Surprisingly, the main-effect QTL does not coincide with FATTY ACID ELONGASE 1 and a parallel genome wide association study suggested that LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASE 2 (LPCAT2) is a candidate for this QTL. Regression analysis also suggested that LPCAT2 expression and 20:1 content in seeds of the 19 MAGIC founder accessions are related. LPCAT is a key component of the Lands cycle; an acyl editing pathway that enables acyl-exchange between the acyl-Coenzyme A and phosphatidylcholine precursor pools used for microsomal fatty acid elongation and desaturation, respectively. We Mendelianised the main-effect QTL using biparental chromosome segment substitution lines and carried out complementation tests to show that a single cis-acting polymorphism in the LPCAT2 promoter causes the variation in seed 20:1 content, by altering the LPCAT2 expression level and total LPCAT activity in developing siliques. Our work establishes that oilseed species exhibit natural variation in the enzymic capacity for acyl editing and this contributes to the genetic control of storage oil composition.


Assuntos
Arabidopsis/genética , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Óleos de Plantas/química , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(41): 10876-10881, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973873

RESUMO

Ketocarotenoids are high-value pigments used commercially across multiple industrial sectors as colorants and supplements. Chemical synthesis using petrochemical-derived precursors remains the production method of choice. Aquaculture is an example where ketocarotenoid supplementation of feed is necessary to achieve product viability. The biosynthesis of ketocarotenoids, such as canthaxanthin, phoenicoxanthin, or astaxanthin in plants is rare. In the present study, complex engineering of the carotenoid pathway has been performed to produce high-value ketocarotenoids in tomato fruit (3.0 mg/g dry weight). The strategy adopted involved pathway extension beyond ß-carotene through the expression of the ß-carotene hydroxylase (CrtZ) and oxyxgenase (CrtW) from Brevundimonas sp. in tomato fruit, followed by ß-carotene enhancement through the introgression of a lycopene ß-cyclase (ß-Cyc) allele from a Solanum galapagense background. Detailed biochemical analysis, carried out using chromatographic, UV/VIS, and MS approaches, identified the predominant carotenoid as fatty acid (C14:0 and C16:0) esters of phoenicoxanthin, present in the S stereoisomer configuration. Under a field-like environment with low resource input, scalability was shown with the potential to deliver 23 kg of ketocarotenoid/hectare. To illustrate the potential of this "generally recognized as safe" material with minimal, low-energy bioprocessing, two independent aquaculture trials were performed. The plant-based feeds developed were more efficient than the synthetic feed to color trout flesh (up to twofold increase in the retention of the main ketocarotenoids in the fish fillets). This achievement has the potential to create a new paradigm in the renewable production of economically competitive feed additives for the aquaculture industry and beyond.


Assuntos
Aquicultura , Carotenoides/biossíntese , Engenharia Metabólica/métodos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Pigmentação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
5.
Metab Eng ; 39: 237-246, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993560

RESUMO

Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.


Assuntos
Melhoramento Genético/métodos , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/fisiologia , Nicotiana/fisiologia , Folhas de Planta/fisiologia , Óleos de Plantas/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Óleos de Plantas/isolamento & purificação , Fatores de Transcrição/genética
6.
Plant Physiol ; 165(1): 30-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24696520

RESUMO

Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased.


Assuntos
Arabidopsis/metabolismo , Engenharia Genética/métodos , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Redes e Vias Metabólicas , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
7.
Plant Cell ; 25(8): 3104-16, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23995083

RESUMO

Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of fatty acid desaturase3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in leafy cotyledon1 (LEC1)-inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-like (L1L) and nuclear factor-YC2 (NF-YC2). Although FUSCA3 and abscisic acid insensitive3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Bacteriano/genética , Ativação Enzimática , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Tamanho do Órgão , Fosfatidilcolinas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Ativação Transcricional/genética , Triglicerídeos/metabolismo
8.
Plant Physiol ; 162(3): 1282-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686420

RESUMO

There has been considerable interest recently in the prospect of engineering crops to produce triacylglycerol (TAG) in their vegetative tissues as a means to achieve a step change in oil yield. Here, we show that disruption of TAG hydrolysis in the Arabidopsis (Arabidopsis thaliana) lipase mutant sugar-dependent1 (sdp1) leads to a substantial accumulation of TAG in roots and stems but comparatively much lower TAG accumulation in leaves. TAG content in sdp1 roots increases with the age of the plant and can reach more than 1% of dry weight at maturity, a 50-fold increase over the wild type. TAG accumulation in sdp1 roots requires both ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL ACYLTRANSFERASE1 and can also be strongly stimulated by the provision of exogenous sugar. In transgenic plants constitutively coexpressing WRINKLED1 and DGAT1, sdp1 also doubles the accumulation of TAG in roots, stems, and leaves, with levels ranging from 5% to 8% of dry weight. Finally, provision of 3% (w/v) exogenous Suc can further boost root TAG content in these transgenic plants to 17% of dry weight. This level of TAG is similar to seed tissues in many plant species and establishes the efficacy of an engineering strategy to produce oil in vegetative tissues that involves simultaneous manipulation of carbohydrate supply, fatty acid synthesis, TAG synthesis, and also TAG breakdown.


Assuntos
Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Triglicerídeos/metabolismo , Aciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sacarose/metabolismo , Sacarose/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/genética
9.
Plant Biotechnol J ; 11(3): 355-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23171303

RESUMO

Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops.


Assuntos
Brassica napus/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Dessecação , Família Multigênica , Interferência de RNA , Sementes/crescimento & desenvolvimento
10.
Curr Opin Plant Biol ; 15(3): 322-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516438

RESUMO

The transition from seed to seedling is an important step in the life cycle of plants, which is fuelled primarily by the breakdown of triacylglycerol (TAG) in 'oilseed' species. TAG is stored within cytosolic oil bodies, while the pathway for fatty acid ß-oxidation resides in the peroxisome. Although the enzymology of fatty acid ß-oxidation has been relatively well characterised, the processes by which fatty acids are liberated from oil bodies and enter the peroxisome are less well understood and, together with metabolite, cofactor and co-substrate transporters, represent key targets for future research in order to understand co-ordination of peroxisomal metabolism with that of other subcellular compartments.


Assuntos
Peroxissomos/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Germinação , Modelos Biológicos , Oxirredução , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento
11.
Plant Physiol ; 157(2): 866-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21825108

RESUMO

Triacylglycerol (TAG) is a major storage reserve in many plant seeds. We previously identified a TAG lipase mutant called sugar-dependent1 (sdp1) that is impaired in TAG hydrolysis following Arabidopsis (Arabidopsis thaliana) seed germination (Eastmond, 2006). The aim of this study was to identify additional lipases that account for the residual TAG hydrolysis observed in sdp1. Mutants were isolated in three candidate genes (SDP1-LIKE [SDP1L], ADIPOSE TRIGLYCERIDE LIPASE-LIKE, and COMPARATIVE GENE IDENTIFIER-58-LIKE). Analysis of double, triple, and quadruple mutants showed that SDP1L is responsible for virtually all of the residual TAG hydrolysis present in sdp1 seedlings. Oil body membranes purified from sdp1 sdp1L seedlings were deficient in TAG lipase activity but could still hydrolyze di- and monoacylglycerol. SDP1L is expressed less strongly than SDP1 in seedlings. However, SDP1L could partially rescue TAG breakdown in sdp1 seedlings when expressed under the control of the SDP1 or 35S promoters and in vitro assays showed that both SDP1 and SDP1L can hydrolyze TAG, in preference to diacylglycerol or monoacylglycerol. Seed germination was slowed in sdp1 sdp1L and postgerminative seedling growth was severely retarded. The frequency of seedling establishment was also reduced, but sdp1 sdp1L was not seedling lethal under normal laboratory growth conditions. Our data show that together SDP1 and SDP1L account for at least 95% of the rate of TAG hydrolysis in Arabidopsis seeds, and that this hydrolysis is important but not essential for seed germination or seedling establishment.


Assuntos
Arabidopsis/fisiologia , Germinação , Lipase/genética , Lipase/metabolismo , Óleos de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipase Lipoproteica/metabolismo , Monoacilglicerol Lipases/metabolismo , Mutação , Triglicerídeos/metabolismo
12.
Plant Physiol Biochem ; 47(6): 485-90, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19136267

RESUMO

Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.


Assuntos
Arabidopsis/metabolismo , Lipase/metabolismo , Óleos de Plantas/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Triglicerídeos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Genes de Plantas , Hidrólise , Lipase/química , Lipase/genética , Mutação , Plântula/genética , Sementes/genética
13.
Plant Cell ; 19(4): 1376-87, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17449810

RESUMO

Hydrogen peroxide is a major by-product of peroxisomal metabolism and has the potential to cause critical oxidative damage. In all eukaryotes, catalase is thought to be instrumental in removing this H(2)O(2). However, plants also contain a peroxisomal membrane-associated ascorbate-dependent electron transfer system, using ascorbate peroxidase and monodehydroascorbate reductase (MDAR). Here, I report that the conditional seedling-lethal sugar-dependent2 mutant of Arabidopsis thaliana is deficient in the peroxisomal membrane isoform of MDAR (MDAR4). Following germination, Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for early seedling growth, and massive amounts of H(2)O(2) are generated within the peroxisome as a by-product of fatty acid beta-oxidation. My data suggest that the membrane-bound MDAR4 component of the ascorbate-dependent electron transfer system is necessary to detoxify H(2)O(2), which escapes the peroxisome. This function appears to be critical to protect oil bodies that are in close proximity to peroxisomes from incurring oxidative damage, which otherwise inactivates the triacylglycerol lipase SUGAR-DEPENDENT1 and cuts off the supply of carbon for seedling establishment.


Assuntos
Arabidopsis/crescimento & desenvolvimento , NADH NADPH Oxirredutases/metabolismo , Sementes/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Germinação , Hidrólise , Dados de Sequência Molecular , Organelas/enzimologia , Organelas/ultraestrutura , Óleos de Plantas/metabolismo
14.
Plant Cell ; 18(3): 665-75, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16473965

RESUMO

Triacylglycerol hydrolysis (lipolysis) plays a pivotal role in the life cycle of many plants by providing the carbon skeletons and energy that drive postgerminative growth. Despite the physiological importance of this process, the molecular mechanism is unknown. Here, a genetic screen has been used to identify Arabidopsis thaliana mutants that exhibit a postgerminative growth arrest phenotype, which can be rescued by providing sugar. Seventeen sugar-dependent (sdp) mutants were isolated, and six represent new loci. Triacylglycerol hydrolase assays showed that sdp1, sdp2, and sdp3 seedlings are deficient specifically in the lipase activity that is associated with purified oil bodies. Map-based cloning of SDP1 revealed that it encodes a protein with a patatin-like acyl-hydrolase domain. SDP1 shares this domain with yeast triacylglycerol lipase 3 and human adipose triglyceride lipase. In vitro assays confirmed that recombinant SDP1 hydrolyzes triacylglycerols and diacylglycerols but not monoacylglycerols, phospholipids, galactolipids, or cholesterol esters. SDP1 is expressed predominantly in developing seeds, and a SDP1-green fluorescent protein fusion was shown to associate with the oil body surface in vivo. These data shed light on the mechanism of lipolysis in plants and establish that a central component is evolutionarily conserved among eukaryotes.


Assuntos
Arabidopsis/enzimologia , Hidrolases de Éster Carboxílico/fisiologia , Germinação/fisiologia , Lipase/fisiologia , Óleos de Plantas/metabolismo , Sementes/enzimologia , Sequência de Aminoácidos , Arabidopsis/embriologia , Arabidopsis/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Mapeamento Cromossômico , Clonagem Molecular , Hidrólise , Membranas Intracelulares/metabolismo , Lipase/química , Lipase/genética , Lipólise , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/análise , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/ultraestrutura , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Especificidade por Substrato , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA