Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Radiol Prot ; 43(1)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626823

RESUMO

Tennessee Eastman Corporation workers were exposed to uranium dust resulting in high-linear energy transfer (LET) irradiation to lung tissue. In this work, radiation lung doses were reconstructed for 26 650 men and women working at the plant between 1942 and 1947. Site air monitoring data of uranium concentrations and payroll records were used to determine the daily inhaled activities and annualized lung doses. Variations in the activity median aerodynamic diameter of the uranium dust, the solubility of particulate matter in the lungs and the sex-specific breathing rate were investigated as part of a sensitivity analysis. Male and female mean lung doses of 18.9 and 32.7 mGy, respectively, from high-LET alpha irradiation, and there was general agreement with evaluations from previously published epidemiological studies. Annual lung dose estimates and sensitivity analysis for the 26 650 workers in the TEC cohort have been archived on the United States Department of Energy Comprehensive Epidemiologic Data Resource.


Assuntos
Exposição Ocupacional , Urânio , Masculino , Humanos , Feminino , Estados Unidos , Tennessee/epidemiologia , Urânio/análise , Exposição Ocupacional/análise , Pulmão/química , Poeira/análise
2.
Int J Radiat Biol ; 99(2): 208-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35758985

RESUMO

BACKGROUND: There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS: A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS: Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.


Assuntos
Neoplasias Pulmonares , Doenças Profissionais , Exposição Ocupacional , Urânio , Masculino , Humanos , Feminino , Adulto , Urânio/efeitos adversos , Tennessee , Exposição Ocupacional/efeitos adversos , Doenças Profissionais/etiologia , Estudos de Coortes , Neoplasias Pulmonares/etiologia , Poeira
3.
Phys Med Biol ; 62(24): 9177-9188, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29064376

RESUMO

The aim of this study is to implement lifetime attributable risk (LAR) predictions of cancer for patients of various age and gender, undergoing diagnostic investigations or treatments in nuclear medicine and to compare the outcome with a population risk estimate using effective dose and the International Commission on Radiological Protection risk coefficients. The radiation induced risk of cancer occurrence (incidence) or death from four nuclear medicine procedures are estimated for both male and female between 0 and 120 years. Estimations of cancer risk are performed using recommended administered activities for two diagnostic (18F-FDG and 99mTc-phosphonate complex) and two therapeutic (131I-iodide and 223Ra-dichloride) radiopharmaceuticals to illustrate the use of cancer risk estimations in nuclear medicine. For 18F-FDG, the cancer incidence for a male of 5, 25, 50 and 75 years at exposure is 0.0021, 0.0010, 0.0008 and 0.0003, respectively. For 99mTc phosphonates complex the corresponding values are 0.000 59, 0.000 34, 0.000 27 and 0.000 13, respectively. For an 131I-iodide treatment with 3.7 GBq and 1% uptake 24 h after administration, the cancer incidence for a male of 25, 50 and 75 years at exposure is 0.041, 0.029 and 0.012, respectively. For 223Ra-dichloride with an administration of 21.9 MBq the cancer incidence for a male of 25, 50 and 75 years is 0.31, 0.21 and 0.09, respectively. The LAR estimations are more suitable in health care situations involving individual patients or specific groups of patients than the health detriment based on effective dose, which represents a population average. The detriment consideration in effective dose adjusts the cancer incidence for suffering of non-lethal cancers while LAR predicts morbidity (incidence) or mortality (cancer). The advantages of these LARs are that they are gender and age specific, allowing risk estimations for specific patients or subgroups thus better representing individuals in health care than effective dose.


Assuntos
Diagnóstico por Imagem/efeitos adversos , Neoplasias Induzidas por Radiação/etiologia , Medicina Nuclear , Doses de Radiação , Adulto , Idoso , Criança , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Proteção Radiológica , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Radiofarmacêuticos/uso terapêutico , Medição de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA