Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Genes Evol ; 222(1): 29-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22358128

RESUMO

Gap junctional proteins are important components of signaling pathways required for the development and ongoing functions of all animal tissues, particularly the nervous system, where they function in the intracellular and extracellular exchange of small signaling factors and ions. In animals whose genomes have been sufficiently sequenced, large families of these proteins, connexins, pannexins, and innexins, have been found, with 25 innexins in the nematode Caenorhabditis elegans Starich et al. (Cell Commun Adhes 8: 311-314, 2001) and at least 37 connexins in the zebrafish Danio rerio Cruciani and Mikalsen (Biol Chem 388:253-264, 2009). Having recently sequenced the medicinal leech Hirudo verbana genome, we now report the presence of 21 innexin genes in this species, nine more than we had previously reported from the analysis of an EST-derived transcriptomic database Dykes and Macagno (Dev Genes Evol 216: 185-97, 2006); Macagno et al. (BMC Genomics 25:407, 2010). Gene structure analyses show that, depending on the leech innexin gene, they can contain from 0 to 6 introns, with closely related paralogs showing the same number of introns. Phylogenetic trees comparing Hirudo to another distantly related leech species, Helobdella robusta, shows a high degree of orthology, whereas comparison to other annelids shows a relatively low level. Comparisons with other Lophotrochozoans, Ecdyzozoans and with vertebrate pannexins suggest a low number (one to two) of ancestral innexin/pannexins at the protostome/deuterostome split. Whole-mount in situ hybridization for individual genes in early embryos shows that ∼50% of the expressed innexins are detectable in multiple tissues. Expression analyses using quantitative PCR show that ∼70% of the Hirudo innexins are expressed in the nervous system, with most of these detected in early development. Finally, quantitative PCR analysis of several identified adult neurons detects the presence of different combinations of innexin genes, a property that may underlie the participation of these neurons in different adult coupling circuits.


Assuntos
Sanguessugas/genética , Sanguessugas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Éxons , Feminino , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sanguessugas/citologia , Sanguessugas/embriologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Filogenia
2.
BMC Genomics ; 11: 407, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20579359

RESUMO

BACKGROUND: The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. RESULTS: A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. CONCLUSIONS: The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.


Assuntos
Sistema Nervoso Central/imunologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Hirudo medicinalis/genética , Hirudo medicinalis/imunologia , Imunidade Inata/genética , Homologia de Sequência do Ácido Nucleico , Imunidade Adaptativa/genética , Animais , Antígenos CD/genética , Peptídeos Catiônicos Antimicrobianos/genética , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Citocinas/genética , Bases de Dados de Ácidos Nucleicos , Etiquetas de Sequências Expressas/metabolismo , Hirudo medicinalis/embriologia , Humanos , RNA Mensageiro/genética , Receptores de Reconhecimento de Padrão/genética , Regeneração/genética , Especificidade da Espécie , Receptores Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA