Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(3): 511-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225430

RESUMO

The increasing similarity of plant species composition among distinct areas is leading to the homogenization of ecosystems globally. Human actions such as ecosystem modification, the introduction of non-native plant species and the extinction or extirpation of endemic and native plant species are considered the main drivers of this trend. However, little is known about when floristic homogenization began or about pre-human patterns of floristic similarity. Here we investigate vegetation trends during the past 5,000 years across the tropical, sub-tropical and warm temperate South Pacific using fossil pollen records from 15 sites on 13 islands within the biogeographical realm of Oceania. The site comparisons show that floristic homogenization has increased over the past 5,000 years. Pairwise Bray-Curtis similarity results also show that when two islands were settled by people in a given time interval, their floristic similarity is greater than when one or neither of the islands were settled. Importantly, higher elevation sites, which are less likely to have experienced human impacts, tended to show less floristic homogenization. While biotic homogenization is often referred to as a contemporary issue, we have identified a much earlier trend, likely driven by human colonization of the islands and subsequent impacts.


Assuntos
Biodiversidade , Ecossistema , Humanos , Ilhas do Pacífico , Plantas , Pólen
2.
Ecol Lett ; 26(5): 729-741, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958810

RESUMO

Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology.


Assuntos
Biodiversidade , Plantas , Humanos , Pólen , Ilhas , Espécies Introduzidas
3.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
4.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330702

RESUMO

The effects of climate change on species richness are debated but can be informed by the past. Here, we generated a sedimentary ancient DNA dataset covering 10 lakes and applied novel methods for data harmonization. We assessed the impact of Holocene climate changes and nutrients on terrestrial plant richness in northern Fennoscandia. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase thereafter, although the climate was stable, with richness and the regional species pool only stabilizing during the past three millennia. Furthermore, overall increases in richness were greater in catchments with higher soil nutrient availability. We suggest that richness will increase with ongoing warming, especially at localities with high nutrient availability and assuming that human activity remains low in the region, although lags of millennia may be expected.


Assuntos
DNA Antigo , Plantas , Mudança Climática , Ecossistema , Humanos , Lagos , Plantas/genética , Pólen
5.
J Med Libr Assoc ; 106(3): 320-329, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29962910

RESUMO

OBJECTIVE: At an academic health sciences library serving a wide variety of disciplines, studying library users' technology use provides necessary information on intersection points for library services. Administering a similar survey annually for five years generated a holistic view of users' technology needs and preferences over time. METHODS: From 2012 to 2016, the University of Florida Health Science Center Library (HSCL) annually administered a sixteen-to-twenty question survey addressing health sciences users' technology awareness and use and their interest in using technology to engage with the library and its services. The survey was distributed throughout the HSC via email invitation from liaison librarians to their colleges and departments and advertisement on the HSCL home page. RESULTS: Smartphone ownership among survey respondents was nearly universal, and a majority of respondents also owned a tablet. While respondents were likely to check library hours, use medical apps, and use library electronic resources from their mobile devices, they were unlikely to friend or follow the library on Facebook or Twitter or send a call number from the catalog. Respondents were more likely to have used EndNote than any other citation management tool, but over 50% of respondents had never used each tool or never heard of it. CONCLUSIONS: Annual review of survey results has allowed librarians to identify users' needs and interests, leading to incremental changes in services offered. Reviewing the aggregate data allowed strategic consideration of how technology impacts library interactions with users, with implications toward library marketing, training, and service development.


Assuntos
Eficiência Organizacional , Tecnologia/tendências , Bibliotecas Médicas , Inquéritos e Questionários
6.
New Phytol ; 213(2): 929-941, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27678125

RESUMO

Sedimentary DNA (sedDNA) has recently emerged as a new proxy for reconstructing past vegetation, but its taphonomy, source area and representation biases need better assessment. We investigated how sedDNA in recent sediments of two small Scottish lakes reflects a major vegetation change, using well-documented 20th Century plantations of exotic conifers as an experimental system. We used next-generation sequencing to barcode sedDNA retrieved from subrecent lake sediments. For comparison, pollen was analysed from the same samples. The sedDNA record contains 73 taxa (mainly genus or species), all but one of which are present in the study area. Pollen and sedDNA shared 35% of taxa, which partly reflects a difference in source area. More aquatic taxa were recorded in sedDNA, whereas taxa assumed to be of regional rather than local origin were recorded only as pollen. The chronology of the sediments and planting records are well aligned, and sedDNA of exotic conifers appears in high quantities with the establishment of plantations around the lakes. SedDNA recorded other changes in local vegetation that accompanied afforestation. There were no signs of DNA leaching in the sediments or DNA originating from pollen.


Assuntos
DNA de Plantas/genética , Sedimentos Geológicos , Espécies Introduzidas , Lagos , Traqueófitas/genética , Geografia , Modelos Teóricos , Pólen/genética , Sequências Repetitivas de Ácido Nucleico/genética , Escócia , Fatores de Tempo
7.
New Phytol ; 171(3): 581-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16866960

RESUMO

Here, we studied the floral morphology and pollination of the distylous plant Linum suffruticosum (Linaceae) in southern Spain. We observed a previously unreported form of distyly that involved twisting and bending of styles and stamens during floral development to achieve three-dimensional reciprocity of anthers and stigmas in the long-styled (pin) and short-styled (thrum) morphs. This developmental pattern causes pin pollen to be placed on the underside of pollinating Usia flies (Bombyliidae), and thrum pollen to be placed on the top of the thorax and abdomen. The pin stigmas contact the flies on the dorsum, apparently picking up predominantly thrum pollen, and the thrum stigmas contact the flies on the ventral surface, apparently picking up predominantly pin pollen. This form of heterostyly would appear on morphological grounds to be far more efficient in dispersing pollen between compatible morphs than the typical pin-thrum system. If so, this plant fits Darwin's prediction of efficient pollen flow between heterostylous morphs more closely than anything Darwin himself reported. Molecular phylogenetic analyses indicate that this form of heterostyly evolved in a lineage that already had typical heterostyly. The analyses also indicate that there have been several independent origins of heterostyly in Linum and at least one reversal to stylar monomorphism.


Assuntos
Linho/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Animais , DNA de Plantas/genética , Frutas/fisiologia , Insetos/fisiologia , Modelos Biológicos , Filogenia , Pólen/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA