RESUMO
Introduction: Neuropeptide Y (NPY) signaling in the brain plays an important role in energy regulation, and is altered during diet-induced obesity. Yet, NPY function during the consumption of specific diet components remains to be fully determined. We have previously demonstrated that consumption of a saturated fat component (free-choice high-fat; fcHF), a sucrose solution (high-sugar; fcHS), or both (fcHFHS) combined with a standard diet (chow and water) has diverse effects on Npy expression in the arcuate nucleus and the sensitivity to intraventricular NPY administration. Arcuate NPY neurons project to the lateral hypothalamus (LHA), and NPY administration in the LHA potently promotes chow intake in rats on a standard diet. However, it is currently unclear if short-term consumption of a palatable free-choice diet alters NPY function in the LHA. Therefore, we assessed the effects of intra-LHA NPY administration on intake in rats following one-week consumption of a fcHF, fcHS, or fcHFHS diet.Methods: Male Wistar rats consumed a fcHF, fcHS, fcHFHS, or control (CHOW) diet for one week before NPY (0.3â µg / 0.3â µL) or phosphate-buffered saline (0.3â µL) was administered into the LHA. Intake was measured 2h later. fcHFHS-fed rats were divided into high-fat (fcHFHS-hf) and low-fat (fcHFHS-lf) groups based on differences in basal fat intake.Results: Intra-LHA NPY administration increased chow intake in fcHFHS- (irrespective of basal fat intake), fcHF- and CHOW-fed rats. Intra-LHA NPY infusion increased fat intake in fcHF-, fcHFHS-hf, but not fcHFHS-lf, rats. Intra-LHA NPY infusion did not increase caloric intake in fcHS-fed rats.Discussion: Our data demonstrate that the effects of intra-LHA NPY on caloric intake differ depending on the consumption of a fat or sugar component, or both, in a free-choice diet. Our data also indicate that baseline preference for the fat diet component modulates the effects of intra-LHA NPY in fcHFHS-fed rats.
Assuntos
Região Hipotalâmica Lateral , Neuropeptídeo Y , Animais , Dieta Hiperlipídica , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropeptídeo Y/metabolismo , Ratos , Ratos Wistar , SacaroseRESUMO
Fibroblast growth factor 23 (FGF23) is an endocrine growth factor and known to play a pivotal role in phosphate homeostasis. Interestingly, several studies point towards a function of FGF23 in the hypothalamus. FGF23 classically activates the FGF receptor 1 in the presence of the co-receptor αKlotho, of both gene expression in the brain was previously established. However, studies on gene and protein expression of FGF23 in the brain are scarce and have been inconsistent. Therefore, our aim was to localise FGF23 gene and protein expression in the rat brain with focus on the hypothalamus. Also, we investigated the protein expression of αKlotho. Adult rat brains were used to localise and visualise FGF23 and αKlotho protein in the hypothalamus by immunofluorescence labelling. Furthermore, western blots were used for assessing hypothalamic FGF23 protein expression. FGF23 gene expression was investigated by qPCR in punches of the arcuate nucleus, lateral hypothalamus, paraventricular nucleus, choroid plexus, ventrolateral thalamic nucleus and the ventromedial hypothalamus. Immunoreactivity for FGF23 and αKlotho protein was found in the hypothalamus, third ventricle lining and the choroid plexus. Western blot analysis of the hypothalamus confirmed the presence of FGF23. Gene expression of FGF23 was not detected, suggesting that the observed FGF23 protein is not brain-derived. Several FGF receptors are known to be present in the brain. Therefore, we conclude that the machinery for FGF23 signal transduction is present in several brain areas, indeed suggesting a role for FGF23 in the brain.
Assuntos
Fatores de Crescimento de Fibroblastos , Glucuronidase , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Hipotálamo/metabolismo , Ratos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismoRESUMO
Consumption of fat and sugar induces hyperphagia and increases the prevalence of obesity and diabetes type 2. Low-grade inflammation in the hypothalamus, a key brain area involved in the regulation of energy homeostasis is shown to blunt signals of satiety after long term high fat diet. The fact that this mechanism can be activated after a few days of hyperphagia before apparent obesity is present led to our hypothesis that hypothalamic inflammation is induced with fat and sugar consumption. Here, we used a free-choice high-fat high-sugar (fcHFHS) diet-induced obesity model and tested the effects of differential overnight nutrient intake during the final experimental night on markers of hypothalamic inflammation. Male Wistar rats were fed a control diet or fcHFHS diet for one week, and assigned to three different feeding conditions during the final experimental night: 1) fcHFHS-fed, 2) fed a controlled amount of chow diet, or 3) fasted. RT-qPCR and Western blot were utilized to measure hypothalamic gene and protein expression, of cytokines and intermediates of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Lastly, we investigated the effects of acute fat intake on markers of hypothalamic inflammation in fat-naïve rats. fcHFHS-fed rats consumed more calories, increased adipose tissue, and showed elevated expression of hypothalamic inflammation markers (increased phosphorylation of NF-κB protein, Nfkbia and Il6 gene expression) compared to chow-fed rats. These effects were evident in rats consuming relative high amounts of fat. Removal of the fat and sugar, or fasting, during the final experimental night ameliorated hypothalamic inflammation. Finally, a positive correlation was observed between overnight acute fat consumption and hypothalamic NF-κB phosphorylation in fat-naïve rats. Our data indicate that one week of fcHFHS diet, and especially the fat component, promotes hypothalamic inflammation, and removal of the fat and sugar component reverses these detrimental effects.
Assuntos
Ingestão de Alimentos , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Obesidade/fisiopatologia , Adiposidade , Animais , Citocinas/sangue , Citocinas/genética , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Açúcares da Dieta/administração & dosagem , Modelos Animais de Doenças , Privação de Alimentos , Hiperfagia/dietoterapia , Hiperfagia/etiologia , Leptina/sangue , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos WistarRESUMO
The hypothalamus plays a fundamental role in regulating homeostatic processes including regulation of food intake. Food intake is driven in part by energy balance, which is sensed by specific brain structures through signaling molecules such as nutrients and hormones. Both circulating glucose and fatty acids decrease food intake via a central mechanism involving the hypothalamus and brain stem. Besides playing a role in signaling energy status, glucose and fatty acids serve as fuel for neurons. This review focuses on the effects of glucose and fatty acids on hypothalamic pathways involved in regulation of energy metabolism as well as on the role of the family of peroxisome proliferator activated receptors (PPARs) which are implicated in regulation of central energy homeostasis. We further discuss the effects of different hypercaloric diets on these pathways.
Assuntos
Dieta/métodos , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase , Hipotálamo/metabolismo , Transdução de Sinais/fisiologia , Animais , Tronco Encefálico/metabolismo , Ingestão de Alimentos , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RoedoresRESUMO
Long-term reduced hypothalamic estrogen signaling leads to increased food intake and decreased locomotor activity and energy expenditure, and ultimately results in obesity and insulin resistance. In the current study, we aimed to determine the acute obesity-independent effects of hypothalamic estrogen signaling on glucose metabolism. We studied endogenous glucose production (EGP) and insulin sensitivity during selective modulation of systemic or intrahypothalamic estradiol (E2) signaling in rats 1 week after ovariectomy (OVX). OVX caused a 17% decrease in plasma glucose, which was completely restored by systemic E2. Likewise, the administration of E2 by microdialysis, either in the hypothalamic paraventricular nucleus (PVN) or in the ventromedial nucleus (VMH), restored plasma glucose. The infusion of an E2 antagonist via reverse microdialysis into the PVN or VMH attenuated the effect of systemic E2 on plasma glucose. Furthermore, E2 administration in the VMH, but not in the PVN, increased EGP and induced hepatic insulin resistance. E2 administration in both the PVN and the VMH resulted in peripheral insulin resistance. Finally, sympathetic, but not parasympathetic, hepatic denervation blunted the effect of E2 in the VMH on both EGP and hepatic insulin sensitivity. In conclusion, intrahypothalamic estrogen regulates peripheral and hepatic insulin sensitivity via sympathetic signaling to the liver.