Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630762

RESUMO

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Assuntos
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurônios/metabolismo , Sistemas do Segundo Mensageiro , Substituição de Aminoácidos , Animais , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética
2.
J Clin Invest ; 126(5): 1897-910, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064284

RESUMO

Noncoding polymorphisms in the fat mass and obesity-associated (FTO) gene represent common alleles that are strongly associated with effects on food intake and adiposity in humans. Previous studies have suggested that the obesity-risk allele rs8050136 in the first intron of FTO alters a regulatory element recognized by the transcription factor CUX1, thereby leading to decreased expression of FTO and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Here, we evaluated the effects of rs8050136 and another potential CUX1 element in rs1421085 on expression of nearby genes in human induced pluripotent stem cell-derived (iPSC-derived) neurons. There were allele-dosage effects on FTO, RPGRIP1L, and AKT-interacting protein (AKTIP) expression, but expression of other vicinal genes, including IRX3, IRX5, and RBL2, which have been implicated in mediating functional effects, was not altered. In vivo manipulation of CUX1, Fto, and/or Rpgrip1l expression in mice affected adiposity in a manner that was consistent with CUX1 influence on adiposity via remote effects on Fto and Rpgrip1l expression. In support of a mechanism, mice hypomorphic for Rpgrip1l exhibited hyperphagic obesity, as the result of diminished leptin sensitivity in Leprb-expressing neurons. Together, the results of this study indicate that the effects of FTO-associated SNPs on energy homeostasis are due in part to the effects of these genetic variations on hypothalamic FTO, RPGRIP1L, and possibly other genes.


Assuntos
Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Regulação da Expressão Gênica , Íntrons , Obesidade , Polimorfismo de Nucleotídeo Único , Proteínas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Proteínas do Citoesqueleto , Metabolismo Energético/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas/genética , Proteínas/metabolismo , Proteína p130 Retinoblastoma-Like/biossíntese , Proteína p130 Retinoblastoma-Like/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
3.
Hum Reprod ; 31(5): 1058-65, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26936885

RESUMO

STUDY QUESTION: Among women who carry pathogenic mitochondrial DNA (mtDNA) point mutations and healthy oocyte donors, what are the levels of support for developing oocyte mitochondrial replacement therapy (OMRT) to prevent transmission of mtDNA mutations? SUMMARY ANSWER: The majority of mtDNA carriers and oocyte donors support the development of OMRT techniques to prevent transmission of mtDNA diseases. WHAT IS KNOWN ALREADY: Point mutations of mtDNA cause a variety of maternally inherited human diseases that are frequently disabling and often fatal. Recent developments in (OMRT) as well as pronuclear transfer between embryos offer new potential options to prevent transmission of mtDNA disease. However, it is unclear whether the non-scientific community will approve of embryos that contain DNA from three people. STUDY DESIGN, SIZE, DURATION: Between 1 June 2012 through 12 February 2015, we administered surveys in cross-sectional studies of 92 female carriers of mtDNA point mutations and 112 healthy oocyte donors. PARTICIPANTS/MATERIALS, SETTING, METHODS: The OMRT carrier survey was completed by 92 female carriers of an mtDNA point mutation. Carriers were recruited through the North American Mitochondrial Disease Consortium (NAMDC), the United Mitochondrial Disease Foundation (UMDF), patient support groups, research and private patients followed at the Columbia University Medical Center (CUMC) and patients' referrals of maternal relatives. The OMRT donor survey was completed by 112 women who had donated oocytes through a major ITALIC! in vitro fertilization clinic. MAIN RESULTS AND THE ROLE OF CHANCE: All carriers surveyed were aware that they could transmit the mutation to their offspring, with 78% (35/45) of women, who were of childbearing age, indicating that the risk was sufficient to consider not having children, and 95% (87/92) of all carriers designating that the development of this technique was important and worthwhile. Of the 21 surveyed female carriers considering childbearing, 20 (95%) considered having their own biological offspring somewhat or very important and 16 of the 21 respondents (76%) were willing to donate oocytes for research and development. Of 112 healthy oocyte donors who completed the OMRT donor survey, 97 (87%) indicated that they would donate oocytes for generating a viable embryo through OMRT. LIMITATIONS, REASONS FOR CAUTION: Many of the participants were either patients or relatives of patients who were already enrolled in a research-oriented database, or who sought care in a tertiary research university setting, indicating a potential sampling bias. The survey was administered to a select group of individuals, who carry, or are at risk for carrying, mtDNA point mutations. These individuals are more likely to have been affected by the mutation or have witnessed first-hand the devastating effects of these mutations. It has not been established whether the general public would be supportive of this work. This survey did not explicitly address alternatives to OMRT. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study indicating a high level of interest in the development of these methods among women affected by the diseases or who are at risk of carrying mtDNA mutations as well as willingness of most donors to provide oocytes for the development of OMRT. STUDY FUNDING/COMPETING INTERESTS: This work was conducted under the auspices of the NAMDC (Study Protocol 7404). NAMDC (U54NS078059) is part of the NCATS Rare Diseases Clinical Research Network (RDCRN). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR) and NCATS. NAMDC is funded through a collaboration between NCATS, NINDS, NICHD and NIH Office of Dietary Supplements. The work was also supported by the Bernard and Anne Spitzer Fund and the New York Stem Cell Foundation (NYSCF). Dr Hirano has received research support from Santhera Pharmaceuticals and Edison Pharmaceuticals for studies unrelated to this work. None of the other authors have conflicts of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Atitude , Heterozigoto , Doenças Mitocondriais/prevenção & controle , Terapia de Substituição Mitocondrial/psicologia , Adulto , Estudos Transversais , DNA Mitocondrial/química , Feminino , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/psicologia , Mutação Puntual
4.
J Clin Invest ; 125(2): 796-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25555215

RESUMO

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


Assuntos
Diferenciação Celular , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Obesidade/metabolismo , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Nucleares/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
5.
Cell Metab ; 19(5): 767-79, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24807221

RESUMO

Common polymorphisms in the first intron of FTO are associated with increased body weight in adults. Previous studies have suggested that a CUX1-regulatory element within the implicated FTO region controls expression of FTO and the nearby ciliary gene, RPGRIP1L. Given the role of ciliary genes in energy homeostasis, we hypothesized that mice hypomorphic for Rpgrip1l would display increased adiposity. We find that Rpgrip1l⁺/⁻ mice are hyperphagic and fatter, and display diminished suppression of food intake in response to leptin administration. In the hypothalamus of Rpgrip1l⁺/⁻ mice, and in human fibroblasts with hypomorphic mutations in RPGRIP1L, the number of AcIII-positive cilia is diminished, accompanied by impaired convening of the leptin receptor to the vicinity of the cilium, and diminished pStat3 in response to leptin. These findings suggest that RPGRIP1L may be partly or exclusively responsible for the obesity susceptibility signal at the FTO locus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adiposidade/genética , Cílios/genética , Polimorfismo Genético/genética , Proteínas/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Células Cultivadas , Ingestão de Alimentos/genética , Feminino , Fibroblastos/metabolismo , Humanos , Hipotálamo , Íntrons , Leptina/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores para Leptina/genética , Fator de Transcrição STAT3/genética , Aumento de Peso/genética
6.
Neurobiol Aging ; 31(7): 1215-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18775584

RESUMO

Heavy metals are essential components of many biological processes but are toxic at high concentrations. Our results illustrate that when metal homeostasis is compromised by a mutation in the metal-responsive transcription factor (MTF-1), the life-span is shortened. In contrast, MTF-1 overexpression results in resistant flies with prolonged longevity on iron or cadmium-supplemented media but shortened life-span on zinc-supplemented medium. This effect was mediated by the overexpression of MTF-1 in specific tissues, such as the gut, hemocytes and in particular in neurons, indicating that these tissues are particularly sensitive to the perturbance of metal homeostasis. Further, MTF-1 overexpression in a neuron-specific manner protects flies against hyperoxia and prolongs the life-span of Cu/Zn superoxide dismutase-deficient flies, suggesting the presence of a common mechanism for protection against both oxidative stress and metal toxicity. Finally, normal life-span is extended up to 40% upon MTF-1 overexpression in either the peripheral nervous system or motorneurons. These results document the tissue-specific import of heavy metal toxicity and oxidative damage in aging and life-span determination.


Assuntos
Cádmio/toxicidade , Proteínas de Ligação a DNA/biossíntese , Drosophila melanogaster/genética , Longevidade/genética , Mutação , Estresse Oxidativo/genética , Fatores de Transcrição/biossíntese , Zinco/toxicidade , Animais , Cádmio/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/efeitos dos fármacos , Técnicas de Inativação de Genes , Longevidade/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Zinco/metabolismo , Fator MTF-1 de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA