Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 125(2): 271-286, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29698111

RESUMO

Strenuous exercise can result in skeletal muscle damage, leading to the systemic mobilization, activation, and intramuscular accumulation of blood leukocytes. Eicosanoid metabolites of arachidonic acid (ARA) are potent inflammatory mediators, but whether changes in dietary ARA intake influence exercise-induced inflammation is not known. This study investigated the effect of 4 wk of dietary supplementation with 1.5 g/day ARA ( n = 9, 24 ± 1.5 yr) or corn-soy oil placebo ( n = 10, 26 ± 1.3 yr) on systemic and intramuscular inflammatory responses to an acute bout of resistance exercise (8 sets each of leg press and extension at 80% one-repetition maximum) in previously trained men. Whole EDTA blood, serum, peripheral blood mononuclear cells (PMBCs), and skeletal muscle biopsies were collected before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. ARA supplementation resulted in higher exercise-stimulated serum creatine kinase activity [incremental area under the curve (iAUC) P = 0.046] and blood leukocyte counts (iAUC for total white cells, P < 0.001; neutrophils: P = 0.007; monocytes: P = 0.015). The exercise-induced fold change in peripheral blood mononuclear cell mRNA expression of interleukin-1ß ( IL1B), CD11b ( ITGAM), and neutrophil elastase ( ELANE), as well as muscle mRNA expression of the chemokines interleukin-8 ( CXCL8) and monocyte chemoattractant protein 1 ( CCL2) was also greater in the ARA group than placebo. Despite this, ARA supplementation did not influence the histological presence of leukocytes within muscle, perceived muscle soreness, or the extent and duration of muscle force loss. These data show that ARA supplementation transiently increased the inflammatory response to acute resistance exercise but did not impair recovery. NEW & NOTEWORTHY Daily arachidonic acid supplementation for 4 wk in trained men augmented the acute systemic and intramuscular inflammatory response to a subsequent bout of resistance exercise. Greater exercise-induced inflammatory responses in men receiving arachidonic acid supplementation were not accompanied by increased symptoms of exercise-induced muscle damage. Although increased dietary arachidonic acid intake does not appear to influence basal inflammation in humans, the acute inflammatory response to exercise stress is transiently increased following arachidonic acid supplementation.


Assuntos
Ácido Araquidônico/administração & dosagem , Exercício Físico/fisiologia , Inflamação/tratamento farmacológico , Treinamento Resistido/efeitos adversos , Adolescente , Adulto , Antígeno CD11b/metabolismo , Quimiocina CCL2/metabolismo , Creatina Quinase/metabolismo , Suplementos Nutricionais , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Elastase de Leucócito/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mialgia/tratamento farmacológico , Mialgia/metabolismo , RNA Mensageiro/metabolismo , Adulto Jovem
2.
J Appl Physiol (1985) ; 124(4): 1080-1091, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389245

RESUMO

Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.


Assuntos
Ácido Araquidônico/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Adulto , Suplementos Nutricionais , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Ribossomos/metabolismo , Células Satélites de Músculo Esquelético , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA