Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Anat ; 242(1): 91-101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958481

RESUMO

Aging is associated with cardiac hypertrophy and progressive decline in heart function. One of the hallmarks of cellular aging is the dysfunction of mitochondria. These organelles occupy around 1/4 to 1/3 of the cardiomyocyte volume. During cardiac aging, the removal of defective or dysfunctional mitochondria by mitophagy as well as the dynamic equilibrium between mitochondrial fusion and fission is distorted. Here, we hypothesized that these changes affect the number of mitochondria and alter their three-dimensional (3D) characteristics in aged mouse hearts. The polyamine spermidine stimulates both mitophagy and mitochondrial biogenesis, and these are associated with improved cardiac function and prolonged lifespan. Therefore, we speculated that oral spermidine administration normalizes the number of mitochondria and their 3D morphology in aged myocardium. Young (4-months old) and old (24-months old) mice, treated or not treated with spermidine, were used in this study (n = 10 each). The number of mitochondria in the left ventricles was estimated by design-based stereology using the Euler-Poincaré characteristic based on a disector at the transmission electron microscopic level. The 3D morphology of mitochondria was investigated by 3D reconstruction (using manual contour drawing) from electron microscopic z-stacks obtained by focused ion beam scanning electron microscopy. The volume of the left ventricle and cardiomyocytes were significantly increased in aged mice with or without spermidine treatment. Although the number of mitochondria was similar in young and old control mice, it was significantly increased in aged mice treated with spermidine. The interfibrillar mitochondria from old mice exhibited a lower degree of organization and a greater variation in shape and size compared to young animals. The mitochondrial alignment along the myofibrils in the spermidine-treated mice appeared more regular than in control aged mice, however, old mitochondria from animals fed spermidine also showed a greater diversity of shape and size than young mitochondria. In conclusion, mitochondria of the aged mouse left ventricle exhibited changes in number and 3D ultrastructure that is likely the structural correlate of dysfunctional mitochondrial dynamics. Spermidine treatment reduced, at least in part, these morphological changes, indicating a beneficial effect on cardiac mitochondrial alterations associated with aging.


Assuntos
Miocárdio , Espermidina , Camundongos , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias , Suplementos Nutricionais
2.
JAMA Netw Open ; 5(5): e2213875, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35616942

RESUMO

Importance: Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective: To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants: This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions: One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures: Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results: A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance: In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration: ClinicalTrials.gov Identifier: NCT03094546.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Idoso , Animais , Biomarcadores , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Suplementos Nutricionais , Feminino , Humanos , Inflamação , Espermidina/farmacologia , Espermidina/uso terapêutico
3.
Cell Rep ; 35(2): 108985, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852843

RESUMO

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Assuntos
Envelhecimento/genética , Proteína 7 Relacionada à Autofagia/genética , Disfunção Cognitiva/genética , Suplementos Nutricionais , Proteínas Quinases/genética , Espermidina/farmacologia , Ubiquitina-Proteína Ligases/genética , Envelhecimento/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
4.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568522

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.


Assuntos
Insuficiência Cardíaca , Animais , Estudos de Coortes , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
5.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L312-L324, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521164

RESUMO

Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.


Assuntos
Pulmão/efeitos dos fármacos , Obesidade/complicações , Obesidade/fisiopatologia , Espermidina/administração & dosagem , Ração Animal , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/efeitos dos fármacos
6.
J Microbiol Methods ; 175: 105968, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479871

RESUMO

The standard procedure for the improved cultural recovery of viable Mycobacterium spp. from diverse samples mainly depends on reducing the viability of background microbiota using different chemical compounds. This study was designed to i) evaluate the efficacy and comparison between N-Acetyl-l-Cysteine-Sodium hydroxide (NALC-2% NaOH) and hexadecylpyridinium chloride (0.75% HPC) treatment and exposure time on reducing the viability of undesirable microorganisms with minimal impact on colostrum consistency; and ii) assess the impact of NALC-2% NaOH on improved and enhanced recovery of Mycobacterium avium subsp. paratuberculosis (MAP) in spiked postpartum colostrum samples and consistency of colostrum. A total of 40 samples, each treated with NALC-2% NaOH for 15 min or 0.75% HPC for 5 h, were investigated for total mesophilic aerobic bacteria (MAB) and enterobacteria (EB) (CFU mL-1). The results showed that treatment of colostrum samples with NALC-2% NaOH completely eliminated EB and significantly reduced MAB (3.6 log10 CFU mL-1). Conversely, samples treated with 0.75% HPC produced a complex mixture following interaction with the colostrum protein and showed non-significant and variable results. In addition, the spiked colostrum treated with NALC-2% NaOH for 15 min revealed recovery of viable MAP cells with a minimum limit of detection of 1.36 log10 CFU 10 mL-1 where no change in the consistency of colostrum was observed. In conclusion, 15-min NALC-2% NaOH treatment of colostrum may significantly reduce the viability of undesirable microorganisms and help to enhance the efficient recovery of MAP without impacting the consistency of high quality postpartum colostrum. This rapid procedure is suitable for efficient recovery and early detection of MAP as well as preventing its transmission to neonates and young calves in MAP infected herds.


Assuntos
Doenças dos Bovinos , Colostro/microbiologia , Descontaminação/métodos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose , Acetilcisteína/química , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia , Cetilpiridínio/química , Feminino , Viabilidade Microbiana , Paratuberculose/diagnóstico , Paratuberculose/microbiologia , Gravidez , Hidróxido de Sódio/química
7.
Int J Syst Evol Microbiol ; 70(5): 3037-3048, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32223835

RESUMO

Two independent strains of a Leptotrichia species (ES3154-GLUT and ES2714_GLU) were isolated from the oral cavity of northern elephant seals (Mirounga angustirostris) that were admitted to The Marine Mammal Centre facilities in California, USA. The strains were isolated from oral swabs by cultivation in PPLO broth supplemented with serum, penicillin and colistin in anaerobic conditions. The strains were Gram-negative, pleomorphic, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile rods/coccobacilli in short chains. The 16S rRNA gene sequence of these strains shared 94.42 % nucleotide similarity with Oceanivirga salmonicida AVG 2115T but demonstrated ≤86.00-92.50 % nucleotide similarity to the 16S rRNA genes of other species of the family Leptotrichiaceae. The genome was sequenced for strain ES3154-GLUT. Average nucleotide identity values between strain ES3154-GLUT and 15 type strain genomes from the family Leptotrichiaceae ranged from 66.74 % vs. Sebaldella termitidis to 73.35 % vs. O. salmonicida. The whole genome phylogeny revealed that the novel species was most closely related to O. salmonicida AVG 2115T. This relationship was also confirmed by nucleotide similarity and multilocus phylogenetic analyses employing various housekeeping genes (partial 23S rRNA, rpoB, rpoC, rpoD, polC, adh, gyrA and gyrB genes). Chemotaxonomic and phenotypical features of strain ES3154-GLUT were in congruence with closely related members of the family Leptotrichiaceae, represented by similar enzyme profiles and fatty acid patterns. MALDI-TOF MS analysis was capable to clearly discriminate strain ES3154-GLUT from all currently described taxa of the family Leptotrichiaceae. Based on these data, we propose a novel species of the genus Oceanivirga, for which the name Oceanivirga miroungae sp. nov. is proposed with the type strain ES3154-GLUT (=DSM 109740T=CCUG 73653T=ATCC TSD-189T=NCTC 14411T) and one representative strain ES2714_GLU. The G+C content is 26.82 %, genome size is 1 356 983 bp.


Assuntos
Fusobactérias/classificação , Boca/microbiologia , Filogenia , Focas Verdadeiras/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , California , DNA Bacteriano/genética , Ácidos Graxos/química , Fusobactérias/isolamento & purificação , Genes Bacterianos , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , RNA Ribossômico 23S , Análise de Sequência de DNA
8.
FASEB J ; 33(12): 13808-13824, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638418

RESUMO

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Assuntos
Ácido Aspártico/análogos & derivados , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Dieta com Restrição de Gorduras , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
9.
Nat Commun ; 10(1): 651, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783116

RESUMO

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Flavonoides/farmacologia , Longevidade/efeitos dos fármacos , Envelhecimento/fisiologia , Angelica/química , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Flavonoides/administração & dosagem , Fatores de Transcrição GATA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Longevidade/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Medicina Tradicional do Leste Asiático , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/tratamento farmacológico , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética
10.
Science ; 359(6374)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371440

RESUMO

Interventions that delay aging and protect from age-associated disease are slowly approaching clinical implementation. Such interventions include caloric restriction mimetics, which are defined as agents that mimic the beneficial effects of dietary restriction while limiting its detrimental effects. One such agent, the natural polyamine spermidine, has prominent cardioprotective and neuroprotective effects and stimulates anticancer immunosurveillance in rodent models. Moreover, dietary polyamine uptake correlates with reduced cardiovascular and cancer-related mortality in human epidemiological studies. Spermidine preserves mitochondrial function, exhibits anti-inflammatory properties, and prevents stem cell senescence. Mechanistically, it shares the molecular pathways engaged by other caloric restriction mimetics: It induces protein deacetylation and depends on functional autophagy. Because spermidine is already present in daily human nutrition, clinical trials aiming at increasing the uptake of this polyamine appear feasible.


Assuntos
Envelhecimento , Autofagia/fisiologia , Restrição Calórica , Suplementos Nutricionais , Espermidina , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/efeitos dos fármacos , Transporte Biológico , Carcinogênese/metabolismo , Doenças Cardiovasculares/prevenção & controle , Humanos , Síndrome Metabólica/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Espermidina/administração & dosagem , Espermidina/metabolismo , Espermidina/farmacologia
11.
Aging (Albany NY) ; 10(1): 19-33, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29315079

RESUMO

Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.


Assuntos
Cognição/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Espermidina/farmacologia , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Disfunção Cognitiva/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Extratos Vegetais/efeitos adversos , Espermidina/administração & dosagem , Espermidina/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA